15 research outputs found

    My father, myself, and my muscles:associations between muscle dysmorphia, narcissism and relationship with father among exercising males

    Get PDF
    Research has yet to examine the associations between muscle dysmorphia (MD), narcissism and relationship with father in a male population. This study aimed to address this. We hypothesized that a negatively experienced relationship with the father for males will lead to an increase in MD symptoms due to undermined self-esteem that stems from a lack of the father as a positive masculine role model. A total of 503 exercising males (Mage = 28.5, SD = 9.6 years) completed self-report measures of MD, narcissism, and relationship with father. Our hypothesized indirect effect model found a negative indirect effect of relationship with father on MD symptoms via vulnerable narcissism, but not via grandiose narcissism. Analysis of individual path coefficients also revealed that a poor relationship with father impacts the development of vulnerable narcissism, but not grandiose narcissism. These findings alert practitioners to the fact that some individuals' MD symptoms may be an attempt to protect the fragile self-esteem central to vulnerable narcissism. Practitioners should consider exploring individuals' feelings and perceptions about their fathers in the treatment of MD. Moreover, future research should build on these findings and explore the observed associations in a longitudinal design to assess the causal model.publishedVersio

    COVID-19 risk-mitigation in reopening mass events: population-based observational study for the UK Events Research Programme in Liverpool City Region

    Get PDF
    OBJECTIVES: To understand severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission risks, perceived risks and the feasibility of risk mitigations from experimental mass cultural events before coronavirus disease 2019 (COVID-19) restrictions were lifted. DESIGN: Prospective, population-wide observational study. SETTING: Four events (two nightclubs, an outdoor music festival and a business conference) open to Liverpool City Region UK residents, requiring a negative lateral flow test (LFT) within the 36 h before the event, but not requiring social distancing or face-coverings. PARTICIPANTS: A total of 12,256 individuals attending one or more events between 28 April and 2 May 2021. MAIN OUTCOME MEASURES: SARS-CoV-2 infections detected using audience self-swabbed (5-7 days post-event) polymerase chain reaction (PCR) tests, with viral genomic analysis of cases, plus linked National Health Service COVID-19 testing data. Audience experiences were gathered via questionnaires, focus groups and social media. Indoor CO2 concentrations were monitored. RESULTS: A total of 12 PCR-positive cases (likely 4 index, 8 primary or secondary), 10 from the nightclubs. Two further cases had positive LFTs but no PCR. A total of 11,896 (97.1%) participants with scanned tickets were matched to a negative pre-event LFT: 4972 (40.6%) returned a PCR within a week. CO2 concentrations showed areas for improving ventilation at the nightclubs. Population infection rates were low, yet with a concurrent outbreak of >50 linked cases around a local swimming pool without equivalent risk mitigations. Audience anxiety was low and enjoyment high. CONCLUSIONS: We observed minor SARS-CoV-2 transmission and low perceived risks around events when prevalence was low and risk mitigations prominent. Partnership between audiences, event organisers and public health services, supported by information systems with real-time linked data, can improve health security for mass cultural events

    Blood transcriptional biomarkers of acute viral infection for detection of pre-symptomatic SARS-CoV-2 infection: a nested, case-control diagnostic accuracy study

    Get PDF
    Background We hypothesised that host-response biomarkers of viral infections might contribute to early identification of individuals infected with SARS-CoV-2, which is critical to breaking the chains of transmission. We aimed to evaluate the diagnostic accuracy of existing candidate whole-blood transcriptomic signatures for viral infection to predict positivity of nasopharyngeal SARS-CoV-2 PCR testing.Methods We did a nested case-control diagnostic accuracy study among a prospective cohort of health-care workers (aged ≄18 years) at St Bartholomew’s Hospital (London, UK) undergoing weekly blood and nasopharyngeal swab sampling for whole-blood RNA sequencing and SARS-CoV-2 PCR testing, when fit to attend work. We identified candidate blood transcriptomic signatures for viral infection through a systematic literature search. We searched MEDLINE for articles published between database inception and Oct 12, 2020, using comprehensive MeSH and keyword terms for “viral infection”, “transcriptome”, “biomarker”, and “blood”. We reconstructed signature scores in blood RNA sequencing data and evaluated their diagnostic accuracy for contemporaneous SARS-CoV-2 infection, compared with the gold standard of SARS-CoV-2 PCR testing, by quantifying the area under the receiver operating characteristic curve (AUROC), sensitivities, and specificities at a standardised Z score of at least 2 based on the distribution of signature scores in test-negative controls. We used pairwise DeLong tests compared with the most discriminating signature to identify the subset of best performing biomarkers. We evaluated associations between signature expression, viral load (using PCR cycle thresholds), and symptom status visually and using Spearman rank correlation. The primary outcome was the AUROC for discriminating between samples from participants who tested negative throughout the study (test-negative controls) and samples from participants with PCR-confirmed SARS-CoV-2 infection (test-positive participants) during their first week of PCR positivity.Findings We identified 20 candidate blood transcriptomic signatures of viral infection from 18 studies and evaluated their accuracy among 169 blood RNA samples from 96 participants over 24 weeks. Participants were recruited between March 23 and March 31, 2020. 114 samples were from 41 participants with SARS-CoV-2 infection, and 55 samples were from 55 test-negative controls. The median age of participants was 36 years (IQR 27–47) and 69 (72%) of 96 were women. Signatures had little overlap of component genes, but were mostly correlated as components of type I interferon responses. A single blood transcript for IFI27 provided the highest accuracy for discriminating between test-negative controls and test-positive individuals at the time of their first positive SARS-CoV-2 PCR result, with AUROC of 0·95 (95% CI 0·91–0·99), sensitivity 0·84 (0·70–0·93), and specificity 0·95 (0·85–0·98) at a predefined threshold (Z score >2). The transcript performed equally well in individuals with and without symptoms. Three other candidate signatures (including two to 48 transcripts) had statistically equivalent discrimination to IFI27 (AUROCs 0·91–0·95).Interpretation Our findings support further urgent evaluation and development of blood IFI27 transcripts as a biomarker for early phase SARS-CoV-2 infection for screening individuals at high risk of infection, such as contacts of index cases, to facilitate early case isolation and early use of antiviral treatments as they emerge

    Immune boosting by B.1.1.529 (Omicron) depends on previous SARS-CoV-2 exposure

    Get PDF
    The Omicron, or Pango lineage B.1.1.529, variant of SARS-CoV-2 carries multiple spike mutations with high transmissibility and partial neutralizing antibody (nAb) escape. Vaccinated individuals show protection from severe disease, often attributed to primed cellular immunity. We investigated T and B cell immunity against B.1.1.529 in triple mRNA vaccinated healthcare workers (HCW) with different SARS-CoV-2 infection histories. B and T cell immunity against previous variants of concern was enhanced in triple vaccinated individuals, but magnitude of T and B cell responses against B.1.1.529 spike protein was reduced. Immune imprinting by infection with the earlier B.1.1.7 (Alpha) variant resulted in less durable binding antibody against B.1.1.529. Previously infection-naĂŻve HCW who became infected during the B.1.1.529 wave showed enhanced immunity against earlier variants, but reduced nAb potency and T cell responses against B.1.1.529 itself. Previous Wuhan Hu-1 infection abrogated T cell recognition and any enhanced cross-reactive neutralizing immunity on infection with B.1.1.529

    Quantitative, multiplexed, targeted proteomics for ascertaining variant specific SARS-CoV-2 antibody response

    Get PDF
    Determining the protection an individual has to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) variants of concern (VoCs) is crucial for future immune surveillance, vaccine development, and understanding of the changing immune response. We devised an informative assay to current ELISA-based serology using multiplexed, baited, targeted proteomics for direct detection of multiple proteins in the SARS-CoV-2 anti-spike antibody immunocomplex. Serum from individuals collected after infection or first- and second-dose vaccination demonstrates this approach and shows concordance with existing serology and neutralization. Our assays show altered responses of both immunoglobulins and complement to the Alpha (B.1.1.7), Beta (B.1.351), and Delta (B.1.617.1) VoCs and a reduced response to Omicron (B1.1.1529). We were able to identify individuals who had prior infection, and observed that C1q is closely associated with IgG1 (r > 0.82) and may better reflect neutralization to VoCs. Analyzing additional immunoproteins beyond immunoglobulin (Ig) G, provides important information about our understanding of the response to infection and vaccination
    corecore