129 research outputs found

    Effective Mean Field Approach to Kinetic Monte Carlo Simulations in Limit Cycle Dynamics with Reactive and Diffusive Rewiring

    Full text link
    The dynamics of complex reactive schemes is known to deviate from the Mean Field (MF) theory when restricted on low dimensional spatial supports. This failure has been attributed to the limited number of species-neighbours which are available for interactions. In the current study, we introduce effective reactive parameters, which depend on the type of the spatial support and which allow for an effective MF description. As working example the Lattice Limit Cycle dynamics is used, restricted on a 2D square lattice with nearest neighbour interactions. We show that the MF steady state results are recovered when the kinetic rates are replaced with their effective values. The same conclusion holds when reactive stochastic rewiring is introduced in the system via long distance reactive coupling. Instead, when the stochastic coupling becomes diffusive the effective parameters no longer predict the steady state. This is attributed to the diffusion process which is an additional factor introduced into the dynamics and is not accounted for, in the kinetic MF scheme.Comment: 8 pages, 6 figure

    Computational investigation of ship propulsion performance in rough seas

    Get PDF
    In this paper, the performance of a merchant vessel propulsion system during acceleration is evaluated under different sea state conditions. The various parts of the main propulsion system have been modelled by using a mean value approach for the engine model with differential equations to calculate the engine crankshaft and turbocharger shaft speeds. Ship propulsion system has been modelled by using differential equations to calculate vessel speed and speed of advance. The output of the engine model has been validated under steady conditions according to the main engine shop test performance data. The calm water resistance is calculated following the ship sea trials results, whilst Wageningen polynomials have been used to simulate the propeller performance for the given hull resistance and speed. In order to estimate the added resistance for different weather conditions, the recommended procedures by International Standards have been followed. Then, the propulsion system performance is evaluated, both in calm water and waves, to investigate the main engine response during acceleration. Based on the simulation results, the propulsion system performance is discussed in respect for the engine response and vessel hydrodynamic performance, predicting the maximum vessel speed for the available engine power and speed

    Energy efficiency parametric design tool in the framework of holistic ship design optimization

    Get PDF
    Recent International Maritime Organization (IMO) decisions with respect to measures to reduce the emissions from maritime greenhouse gases (GHGs) suggest that the collaboration of all major stakeholders of shipbuilding and ship operations is required to address this complex techno-economical and highly political problem efficiently. This calls eventually for the development of proper design, operational knowledge, and assessment tools for the energy-efficient design and operation of ships, as suggested by the Second IMO GHG Study (2009). This type of coordination of the efforts of many maritime stakeholders, with often conflicting professional interests but ultimately commonly aiming at optimal ship design and operation solutions, has been addressed within a methodology developed in the EU-funded Logistics-Based (LOGBASED) Design Project (2004–2007). Based on the knowledge base developed within this project, a new parametric design software tool (PDT) has been developed by the National Technical University of Athens, Ship Design Laboratory (NTUA-SDL), for implementing an energy efficiency design and management procedure. The PDT is an integral part of an earlier developed holistic ship design optimization approach by NTUA-SDL that addresses the multi-objective ship design optimization problem. It provides Pareto-optimum solutions and a complete mapping of the design space in a comprehensive way for the final assessment and decision by all the involved stakeholders. The application of the tool to the design of a large oil tanker and alternatively to container ships is elaborated in the presented paper

    Wave-induced vertical bending moment estimation by onboard tiltmeters units on container ship

    Get PDF
    Full-scale measurements in oceangoing ships have shown that the relationship between bending moment with the curvature curve of hull girder. As part of the INCASS (Inspection Capabilities for Enhanced Ship Safety) EU FP7 project, this paper carried out an estimation of wave-induced vertical bending moment for cargo hold of the 4250 TEU container ship, based on the data of pitch angles processing from the Tiltmeter units placed on board. The results are enable to be processed to the Decision Support System (DSS), in order to assist to monitoring and risk analysis for ship structure and machinery the towards enhanced and efficient ship operations (Konstantinos, et al., 2015). The prediction values also provide a reference for the trend analy-sis of the past record signals (Ulrik Dam et al, 2015) for evaluation of longitudinal strength of container ship. The advance in different pitch angle response (deformation curvature) of hull girder can be as a development of modern decision support systems for guidance to the ship's master (Lloyd's Register, 2016

    Tanker ship structural analysis for intact and damage cases

    Get PDF
    This paper presents the work carried out to assess the structural calculation of a tanker ship in intact and damage conditions, in order to know the areas of the central cargo ship exposed to greater stresses. Analysing the results obtained from the intact condition and damage conditions due to grounding. The method selected to simulate the damage conditions has been done applying a change in the mechanical properties of the material; reductions of 40, 60 and 80 % of Young Modules were applied. The validation of the results was made following the guidelines "Common Structural Rules for Bulk Carriers and Oil Tankers" from IACS. The finite element method and finite element analysis software (Ansys®) were used to analyse intact and ground-ing cases. For intact case only one scenario was done, full load condition. For grounding, three scenarios were done. The results presented correspond to the validation of the finite element model, and the results concern-ing the maximum value of Von Mises Stress for each load condition, verifying if the permissible stress has been exceeded in each of the conditions analysed

    Analysis of the wave-induced vertical bending moment and comparison with the class imposed design loads for 4250 TEU container ship

    Get PDF
    The long-term predictions of vertical wave bending moment are made for the extreme design values on ship. As part of the INCASS (Inspection Capabilities for Enhanced Ship Safety), this paper carried out a short-term estimation of wave loads for 4250 TEU container ship by the hydrodynamic analysis software of ANSYS-Aqwa based on three-dimensional linear potential flow theories. Based on the short-term predic-tion and the wave statistic of the North Atlantic Ocean, a long-term prediction of vertical wave bending mo-ment is obtained. The results are required and processed to the Decision Support System (DSS), in order to assist to monitoring and risk analysis for ship structure and machinery the towards enhanced and efficient ship operations (Konstantinos, et al., 2015). The prediction values also provide a reference for the trend analysis of the past record signals (Ulrik Dam et al, 2015) for evaluation of longitudinal strength of container ship

    Comparison of diesel-electric with hybrid-electric propulsion system safety using system-theoretic process analysis

    Get PDF
    Cruise ship industry is rapidly developing, with both the vessels size and number constantly growing up, which renders ensuring passengers, crew and ship safety a paramount necessity. Collision, grounding and fire are among the most frequent accidents on cruise ships with high consequences. In this study, a hazard analysis of diesel-electric and hybrid-electric propulsion system is undertaken using System-Theoretic Process Analysis (STPA). The results demonstrate significant increase in potential hazardous scenarios due to failures in automation and control systems, leading to fire and a higher number of scenarios leading to propulsion and power loss in hybrid-electric propulsion systems than on a conventional cruise-ship propulsion system. Results also demonstrate that STPA enhancement is required to compare the risk of two propulsion systems

    Autonomous collision avoidance control using deep reinforcement learning for maritime autonomous surface ships

    Get PDF
    The maritime industry has been progressing towards autonomous shipping with the main barrier and scepticism eing on the safety assurance of the next-generation autonomous ships. This study aims to enhance the safety of the autonomous ships by developing an intelligent agent that makes evasive decisions considering the ship domain as a safety zone. The proposed approach is demonstrated by considering the case study of a short sea shipping cargo ship. An intelligent reinforcement learning agent is trained to maoneuvre the investigated ship in restricted sea area. The results of this study verify the agent's ability to make safe evasive decisions and control the autonomous collision avoidance for autonomous ships in known and unknown environments

    Numerical study of propulsion system performance during ship acceleration

    Get PDF
    Ship acceleration manoeuvre is important in terms of safety and engine performance. Head seaways are one of the most challenging conditions for the ship propulsion. A detailed simulation of the propulsion system’s transient response during dynamic acceleration in harsh conditions can result in a thorough investigation of the engine performance, a better management of control system and the monitoring of engine limiters application in real conditions. For the overall propulsion system performance assessment during ship acceleration, a computational tool has been developed that comprises sub-systems for the simulation of engine, turbocharger, propeller components and their interaction. The developed tool has been validated against available shop and sea trials data and then it has been tested for the simulation of propulsion system performance during acceleration in dynamic conditions. Based on the simulations results, a sensitivity analysis has been performed for the investigation of the governor control unit limiters that apply on the engine during acceleration. As a result, the effect of engine governor limiters on the overall engine and hydrodynamic performance of the ship during acceleration is quantified and discussed
    • …
    corecore