2,484 research outputs found

    Response of Two Dams in the 1987 Whittier Narrows Earthquake

    Get PDF
    The 1987 Whittier Narrows earthquake (ML = 5.9) shook two dams, the Puddingstone and Cogswell dams, which were instrumented as part of the California Strong Motion Instrumentation Program (CSMIP). The resulting recorded accelerograms provided a valuable opportunity to investigate and evaluate the accuracy and reliability of conventional geotechnical procedures for evaluation of dynamic response characteristics of earth and rockfill dams. This paper presents the results of these studies, which provide insight regarding current techniques for dynamic soil property evaluation and the applicability of one- and two-dimensional analytical procedures to evaluation of the dynamic response of these types of dams

    Extrapolation of Galactic Dust Emission at 100 Microns to CMBR Frequencies Using FIRAS

    Full text link
    We present predicted full-sky maps of submillimeter and microwave emission from the diffuse interstellar dust in the Galaxy. These maps are extrapolated from the 100 micron emission and 100/240 micron flux ratio maps that Schlegel, Finkbeiner, & Davis (1998; SFD98) generated from IRAS and COBE/DIRBE data. Results are presented for a number of physically plausible emissivity models. We find that no power law emissivity function fits the FIRAS data from 200 - 2100 GHz. In this paper we provide a formalism for a multi-component model for the dust emission. A two-component model with a mixture of silicate and carbon-dominated grains (motivated by Pollack et al., 1994}) provides a fit to an accuracy of about 15% to all the FIRAS data over the entire high-latitude sky. Small systematic differences are found between the atomic and molecular phases of the ISM. Our predictions for the thermal (vibrational) emission from Galactic dust at \nu < 3000 GHz are available for general use. These full-sky predictions can be made at the DIRBE resolution of 40' or at the higher resolution of 6.1 arcmin from the SFD98 DIRBE-corrected IRAS maps.Comment: 48 pages, AAS LaTeX, 6 figures, ApJ (accepted). Data described in the text, as well as 4 additional figures, are available at http://astro.berkeley.edu/dus

    Tracing the energetics and evolution of dust with Spitzer : a chapter in the history of the Eagle Nebula

    Get PDF
    Context. The Spitzer GLIMPSE and MIPSGAL surveys have revealed a wealth of details about the Galactic plane in the infrared (IR)with orders of magnitude higher sensitivity, higher resolution, and wider coverage than previous IR observations. The structure of the interstellar medium (ISM) is tightly connected to the countless star-forming regions. We use these surveys to study the energetics and dust properties of the Eagle Nebula (M16), one of the best known star-forming regions. Aims. We present MIPSGAL observations of M16 at 24 and 70 μm and combine them with previous IR data. The mid-IR image shows a shell inside the well-known molecular borders of the nebula, as in the ISO and MSX observations from 15 to 21 μm. The morphologies at 24 and 70 μm are quite different, and its color ratio is unusually warm. The far-IR image resembles the one at 8 μm that enhances the structure of the molecular cloud and the "pillars of creation". We use this set of IR data to analyze the dust energetics and properties within this template for Galactic star-forming regions. Methods. We measure IR spectral energy distributions (SEDs) across the entire nebula, both within the inner shell and the photodissociation regions (PDRs).We use the DUSTEM model to fit these SEDs and constrain the dust temperature, the dust-size distribution, and the radiation field intensity relative to that provided by the star cluster NGC 6611 (χ/χ0). Results. Within the PDRs, the inferred dust temperature (~35 K), the dust-size distribution, and the radiation field intensity (χ/χ0 < 1) are consistent with expectations. Within the inner shell, the dust is hotter (~70 K). Moreover, the radiation field required to fit the SED is larger than that provided by NGC 6611 (χ/χ0 > 1). We quantify two solutions to this problem: (1) The size distribution of the dust in the shell is not that of interstellar dust. There is a significant enhancement of the carbon dust-mass in stochastically heated very small grains. (2) The dust emission arises from a hot (~10^6 K) plasma where both UV and collisions with electrons contribute to the heating. Within this hypothesis, the shell SED may be fit for a plasma pressure p/k ~ 5 × 10^7 K cm^(−3). Conclusions. We suggest two interpretations for the M16 inner shell: (1) The shell matter is supplied by photo-evaporative flows arising from dense gas exposed to ionized radiation. The flows renew the shell matter as it is pushed out by the pressure from stellar winds. Within this scenario, we conclude that massive-star forming regions such as M16 have a major impact on the carbon dustsize distribution. The grinding of the carbon dust could result from shattering in grain-grain collisions within shocks driven by the dynamical interaction between the stellar winds and the shell. (2) We also consider a more speculative scenario where the shell is a supernova remnant. In this case, we would be witnessing a specific time in the evolution of the remnant where the plasma pressure and temperature would enable the remnant to cool through dust emission

    Accuracy metrics for judging time scale algorithms

    Get PDF
    Time scales have been constructed in different ways to meet the many demands placed upon them for time accuracy, frequency accuracy, long-term stability, and robustness. Usually, no single time scale is optimum for all purposes. In the context of the impending availability of high-accuracy intermittently-operated cesium fountains, we reconsider the question of evaluating the accuracy of time scales which use an algorithm to span interruptions of the primary standard. We consider a broad class of calibration algorithms that can be evaluated and compared quantitatively for their accuracy in the presence of frequency drift and a full noise model (a mixture of white PM, flicker PM, white FM, flicker FM, and random walk FM noise). We present the analytic techniques for computing the standard uncertainty for the full noise model and this class of calibration algorithms. The simplest algorithm is evaluated to find the average-frequency uncertainty arising from the noise of the cesium fountain's local oscillator and from the noise of a hydrogen maser transfer-standard. This algorithm and known noise sources are shown to permit interlaboratory frequency transfer with a standard uncertainty of less than 10(exp -15) for periods of 30-100 days

    Algebraic Classification of Weyl Anomalies in Arbitrary Dimensions

    Full text link
    Conformally invariant massless field systems involving only dimensionless parameters are known to describe particle physics at very high energy. In the presence of an external gravitational field, the conformal symmetry may generalize to Weyl invariance. However, the latter symmetry no longer survives after quantization: A Weyl anomaly appears. In this Letter, a purely algebraic understanding of the universal structure of the Weyl anomalies is presented. The results hold in arbitrary dimensions and independently of any regularization scheme.Comment: 4 pages - accepted for publication in Physical Review Letter

    Measuring Molecular, Neutral Atomic, and Warm Ionized Galactic Gas Through X-Ray Absorption

    Get PDF
    We study the column densities of neutral atomic, molecular, and warm ionized Galactic gas through their continuous absorption of extragalactic X-ray spectra at |b| > 25 degrees. For N(H,21cm) < 5x10^20 cm^-2 there is an extremely tight relationship between N(H,21cm) and the X-ray absorption column, N(xray), with a mean ratio along 26 lines of sight of N(xray)/N(H,21cm) = 0.972 +- 0.022. This is significantly less than the anticpated ratio of 1.23, which would occur if He were half He I and half He II in the warm ionized component. We suggest that the ionized component out of the plane is highly ionized, with He being mainly He II and He III. In the limiting case that H is entirely HI, we place an upper limit on the He abundance in the ISM of He/H <= 0.103. At column densities N(xray) > 5x10^20 cm^-2, which occurs at our lower latitudes, the X-ray absorption column N(xray) is nearly double N(H,21cm). This excess column cannot be due to the warm ionized component, even if He were entirely He I, so it must be due to a molecular component. This result implies that for lines of sight out of the plane with |b| ~ 30 degrees, molecular gas is common and with a column density comprable to N(H,21cm). This work bears upon the far infrared background, since a warm ionized component, anticorrelated with N(H,21cm), might produce such a background. Not only is such an anticorrelation absent, but if the dust is destroyed in the warm ionized gas, the far infrared background may be slightly larger than that deduced by Puget et al. (1996).Comment: 1 AASTeX file, 14 PostScript figure files which are linked within the TeX fil

    Determination of the Far-Infrared Cosmic Background Using COBE/DIRBE and WHAM Data

    Full text link
    Determination of the cosmic infrared background (CIB) at far infrared wavelengths using COBE/DIRBE data is limited by the accuracy to which foreground interplanetary and Galactic dust emission can be modeled and subtracted. Previous determinations of the far infrared CIB (e.g., Hauser et al. 1998) were based on the detection of residual isotropic emission in skymaps from which the emission from interplanetary dust and the neutral interstellar medium were removed. In this paper we use the Wisconsin H-alpha Mapper (WHAM) Northern Sky Survey as a tracer of the ionized medium to examine the effect of this foreground component on determination of the CIB. We decompose the DIRBE far infrared data for five high Galactic latitude regions into H I and H-alpha correlated components and a residual component. We find the H-alpha correlated component to be consistent with zero for each region, and we find that addition of an H-alpha correlated component in modeling the foreground emission has negligible effect on derived CIB results. Our CIB detections and 2 sigma upper limits are essentially the same as those derived by Hauser et al. and are given by nu I_nu (nW m-2 sr-1) < 75, < 32, 25 +- 8, and 13 +- 3 at 60, 100, 140, and 240 microns, respectively. Our residuals have not been subjected to a detailed anisotropy test, so our CIB results do not supersede those of Hauser et al. We derive upper limits on the 100 micron emissivity of the ionized medium that are typically about 40% of the 100 micron emissivity of the neutral atomic medium. This low value may be caused in part by a lower dust-to-gas mass ratio in the ionized medium than in the neutral medium, and in part by a shortcoming of using H-alpha intensity as a tracer of far infrared emission.Comment: 38 pages, 8 figures. Accepted for publication in Ap

    Unfolding Mixed-Symmetry Fields in AdS and the BMV Conjecture: I. General Formalism

    Full text link
    We present some generalities of unfolded on-shell dynamics that are useful in analysing the BMV conjecture for mixed-symmetry fields in constantly curved backgrounds. In particular we classify the Lorentz-covariant Harish-Chandra modules generated from primary Weyl tensors of arbitrary mass and shape, and in backgrounds with general values of the cosmological constant. We also discuss the unfolded notion of local degrees of freedom in theories with and without gravity and with and without massive deformation parameters, using the language of Weyl zero-form modules and their duals.Comment: Corrected typos, references added, two figures, some remarks and two subsections added for clarit
    corecore