21 research outputs found

    Gasification of biomass in supercritical water, challenges for the process design—lessons learned from the operation experience of the first dedicated pilot plant

    Get PDF
    Gasification of organic matter under the conditions of supercritical water (T > 374 °C, p > 221 bar) is an allothermal, continuous flow process suitable to convert materials with high moisture content (<20 wt.% dry matter) into a combustible gas. The gasification of organic matter with water as a solvent offers several benefits, particularly the omission of an energy-intensive drying process. The reactions are fast, and mean residence times inside the reactor are consequently low (less than 5 min). However, there are still various challenges to be met. The combination of high temperature and pressure and the low concentration of organic matter require a robust process design. Additionally, the low value of the feed and the product predestinate the process for decentralized applications, which is a challenge for the economics of an application. The present contribution summarizes the experience gained during more than 10 years of operation of the first dedicated pilot plant for supercritical water gasification of biomass. The emphasis lies on highlighting the challenges in process design. In addition to some fundamental results gained from comparable laboratory plants, selected experimental results of the pilot plant “VERENA” (acronym for the German expression “experimental facility for the energetic exploitation of agricultural matter”) are presented

    Process Effluent Recycling in the Supercritical Water Gasification of Dry Biomass

    Get PDF
    The influence of process water recycling during the Supercritical Water Gasification (SCWG) of dry biomasses was investigated. Dry biomass has to be diluted with water to a dry matter content of approximately 10 wt.% to gasify it in the process of supercritical water gasification. The treatment of wastewater in the SCWG process is cost intensive due to organic contaminants; therefore, the recycling of the process effluent is attractive. Salt separation is needed to avoid accumulation of salts in the effluents, since salts enhance corrosion rates and might cause blocking of the flow when the effluent is recycled. The grass Reed Canary Grass and grapevines were gasified. The recycling of the process effluent did not influence the composition of the product gas. In both cases the carbon efficiency decreased by 4% when wastewater was used to dilute the biomass. An increase in organic carbon and potassium in the reactor effluent was observed after gasification of the biomass with recycled process effluent. The addition of potassium hydroxide to the feed as a homogenous catalyst needs to be closely monitored and adjusted according to the potassium content of the reactor effluent. Insufficient salt separation proved to be an issue regarding formation of solid deposits in the reaction system

    Catalytic Biomass Gasification in Supercritical Water and Product Gas Upgrading

    Get PDF
    The gasification of biomass with supercritical water, also known as SCWG, is a sustainable method of hydrogen production. The process produces a mixture of hydrogen, carbon oxides, and hydrocarbons. Upgrading this mixture through steam or dry reforming of hydrocarbons to create synthesis gas and then extra hydrogen is a viable way to increase hydrogen production from biomass. This literature review discusses combining these two processes and recent experimental work on catalytic SCWG of biomass and its model compounds and steam/dry reforming of produced hydrocarbons. It focuses on catalysts used in these processes and their key criteria, such as activity, selectivity towards hydrogen and methane, and ability to inhibit carbon formation and deposition. A new criterion is proposed to evaluate catalyst performance in biomass SCWG and the need for further upgrading via reforming, based on the ratio of hydrogen bound in hydrocarbons to total hydrogen produced during SCWG. The review concludes that most catalysts used in biomass SCWG trap a large proportion of hydrogen in hydrocarbons, necessitating further processing of the product stream

    Formic Acid Formation by ClostridiumClostridium ljungdahliiljungdahlii at Elevated Pressures of Carbon Dioxide and Hydrogen

    Get PDF
    Low productivities of bioprocesses using gaseous carbon and energy sources are usually caused by the low solubility of those gases (e.g., H2 and CO). It has been suggested that increasing the partial pressure of those gases will result in higher dissolved concentrations and should, therefore, be helpful to overcome this obstacle. Investigations of the late 1980s with mixtures of hydrogen and carbon monoxide showed inhibitory effects of carbon monoxide partial pressures above 0.8 bar. Avoiding any effects of carbon monoxide, we investigate growth and product formation of Clostridium ljungdahlii at absolute process pressures of 1, 4, and 7 bar in batch stirred tank reactor cultivations with carbon dioxide and hydrogen as sole gaseous carbon and energy source. With increasing process pressure, the product spectrum shifts from mainly acetic acid and ethanol to almost only formic acid at a total system pressure of 7 bar. On the other hand, no significant changes in overall product yield can be observed. By keeping the amount of substance flow rate constant instead of the volumetric gas feed rate when increasing the process pressure, we increased the overall product yield of 7.5 times of what has been previously reported in the literature. After 90 h of cultivation at a total pressure of 7 bar a total of 4 g L−1 of products is produced consisting of 82.7 % formic acid, 15.6 % acetic acid, and 1.7 % ethanol
    corecore