37 research outputs found

    Experimental study and analytical modeling of the channel length influence on the electrical characteristics of small-molecule thin-film transistors

    Get PDF
    Bottom-contact p-type small-molecule copper phthalocyanine (CuPc) thin film transistors (TFTs) with different channel lengths have been fabricated by thermal evaporation. The influence of the channel length on the current-voltage characteristics of the fabricated transistors were investigated in the linear and saturation regimes. The devices exhibit excellent p-type operation characteristics. Results show that devices with smaller channel length (L = 2.5 mu m and 5 mu m) present the best electrical performance, in terms of drain current value, field effect mobility and subthreshold slope. Saturation field-effect mobilities of 1.7 x 10(-3) cm(2) V-1 s(-1) and 1 x 10(-3) cm(2) V-1 s(-1) were obtained for TFTs with channel lengths of L = 2.5 mu m and L = 5 mu m, respectively. Transmission line method was used to study the dependence of the contact resistance with the channel length. Contact resistance becomes dominant with respect to the channel resistance only in the case of short channel devices (L = 2.5 mu m and 5 mu m). It was also found that the field effect mobility is extremely dependent on the channel length dimension. Finally, an analytical model has been developed to reproduce the dependence of the transfer characteristics with the channel length and the obtained data are in good agreement with the experimental results for all fabricated devices.Peer ReviewedPostprint (author's final draft

    Effects of Long-term Exposure on E-glass Composite Material Subjected to Stress Corrosion in a Saline Medium

    Full text link
    [EN] This work provides an insight on very long-term degradation of polyester-fiber glass composites immersed more than 30,000 h in saline medium under service stresses. Samples were loaded under bending conditions with stresses both in the elastic and plastic fields, with the result that characteristics in a flexural mode were able to be determined and the ensuing decrease in characteristics was fitted to an exponential model. The degree of losses ranged from 25 to 31% for the bending modulus, from 28 to 35% for the flexural strength, and from 40 to 51% for the specific fracture energy. The most notable losses were for specimens immersed in artificial sea water under a continuous stress of 140 MPa, corresponding to the plastic behavior of the material. Although the existence of matrix plasticization is doubtful, the osmotic effects of the diffusion on the matrix and the junction to the fibers, the presence of microcracks, and the effects of chemical ions in the medium on the surface fiber composition became evident in the strength degradation of the material.Segovia López, EF.; Salvador Moya, MD.; Sahuquillo Navarro, O.; Vicente Escuder, Á. (2007). Effects of Long-term Exposure on E-glass Composite Material Subjected to Stress Corrosion in a Saline Medium. Journal of Composite Materials. 41(17):2119-2128. doi:10.1177/0021998307074134S21192128411
    corecore