25 research outputs found

    Multi-layer photovoltaic fault detection algorithm

    Get PDF
    This study proposes a fault detection algorithm based on the analysis of the theoretical curves which describe the behaviour of an existing grid-connected photovoltaic (GCPV) system. For a given set of working conditions, a number of attributes such as voltage ratio (VR) and power ratio (PR) are simulated using virtual instrumentation LabVIEW software. Furthermore, a third-order polynomial function is used to generate two detection limits (high and low limits) for the VR and PR ratios. The high and low detection limits are compared with real-time long-term data measurements from a 1.1 kWp GCPV system installed at the University of Huddersfield, United Kingdom. Furthermore, samples that lie out of the detecting limits are processed by a fuzzy logic classification system which consists of two inputs (VR and PR) and one output membership function. The obtained results show that the fault detection algorithm accurately detects different faults occurring in the PV system. The maximum detection accuracy (DA) of the proposed algorithm before considering the fuzzy logic system is equal to 95.27%; however, the fault DA is increased up to a minimum value of 98.8% after considering the fuzzy logic system

    Modelling, control design, and analysis of the inner control's loops intended for single‐phase voltage‐controlled inverter‐based microgrid

    Get PDF
    In voltage-controlled voltage source inverters (VSIs)-based microgrids (MGs), the inner control is of prime interest task for guaranteeing safe and stable operation. In this paper, an in-depth investigation of the modelling, control design, and analysis of the voltage and current inner control loops intended for single-phase voltage-controlled VSIs is established. The main objective of this work is to provide a comprehensive study of the mathematical modelling, control design, and performance evaluation of the inner control's loops considering different proportional-integral (PI) controller types with and without compensation, and to determine the optimal scheme that can offer better performance in terms of implementation simplicity, robustness, and transient and steady-state responses. Thus, the mathematical closed-loop models of designed outer voltage and inner current control schemes based on PI, P, and feedforward controllers with and without compensation are, first, derived. Following this, a systematic and effective control design for tuning the different PI controllers’ parameters is proposed. Furthermore, an analysis revealing the performance of the designed voltage and current control schemes is provided. This analysis enables us to choose a P controller and PI feedforward controller for the current control loop and the voltage control loop, respectively. The chosen P and PI controllers should be simple; meanwhile, they should offer a wide bandwidth. A simulation study is carried out in MATLAB/Simulink software to assess the performance of the adopted inner control scheme for both linear and non-linear loads. In addition, an experimental setup, based on a TMS320F2837xD μC, of a single-phase VSI supplying linear and non-linear loads is built to verify the effectiveness and the robustness of the adopted inner controller. The results demonstrated: (1) the necessity of introducing the compensation term, which is responsible for offering control improvement against voltage perturbation, (2) the high tracking performance of the chosen controller in terms of dynamic and steady-state responses as well as its simplicity of implementation

    Grid-connected modular PV-Converter system with shuffled frog leaping algorithm based DMPPT controller

    Get PDF
    Maximum power extraction for PV systems with multiple panels under partial shading conditions (PSCs) relies on the configuration of the system and the optimal searching algorithms used. This paper described a PV system with multiple PV panels in series. Each panel has a dc-dc step-down converter, hence allowing independent control of load and source power ratio corresponding to the irradiation levels. An H-bridge terminal inverter is also used for grid connection. An advanced searching algorithm (TSPSOEM) is proposed in the paper for the distributed maximum power point tracking (DMPPT). This applies the basic particle swarm optimization (PSO) procedure but with an extended memory and incorporating the grouping concept from shuffled frog leaping algorithm (SFLA). The new algorithm is applied simultaneously to all PV-converter modules in the chain. The system can exploit the variable converter ratios and reduces the effect of differential shading, both between panels and across panels. The paper presents the system and the proposed new algorithm and demonstrating superior results obtained when compared with other conventional methods

    Experimental assessment of Maximum Power Point Tracking methods for photovoltaic systems

    No full text
    International audienceThis paper presents different Maximum Power Point Tracking (MPPT) methods belonging to different classes as well as two overviews. The first was about the procedures used in the test and evaluation of MPPTs. The second is an overview of Fuzzy Logic Controller (FLC) MPPTs and improved MPPTs. Conventional MPPTs such as Perturb and Observe (P&O), Hill Climbing (HC) and Incremental Conductance (InCond); Improved MPPTs (are the modified versions of conventional MPPTs) such as Improved Incremental Conductance (Improved-InCond) and intelligent MPPTs such as FLC have been implemented and tested under two different levels of irradiance and temperature. A detailed description about the hardware and software implementation platforms (designed and built in our laboratory) is provided. Based on measured data, the MPPTs under consideration have been evaluated and compared in terms of different criteria, showing the advantages and disadvantages of each one. The comparison results showed that Improved-InCond gives a fast convergence to the MPP(Maximum Power Point). Whereas, FLC is able to adapt to the variation of irradiance and temperature levels. Thereby, a good performance is obtained wherein the MPP is reached in a short time as well as the power ripples are very small

    Experimental assessment of new fast MPPT algorithm for PV systems under non-uniform irradiance conditions

    No full text
    International audienceThe paper carries out an experimental investigation of a new Maximum Power Point Tracking (MPPT) method for standalone Photovoltaic (PV) systems. The new method combines a novel mechanism of global maximum power point identifying loop when the system undergoes multiple maximum power points and the use of adaptive variable step Hill Climbing (HC) MPPT technique to track the identified Global Maximum Power Point (GMPP). To figure out the advantages of the proposed method, it is implemented together with three local MPPTs (e.g., two conventional MPPTs and fuzzy logic-based one) and compared with six recently developed Global MPPT methods. Obtained experimental results as well as comparison outcomes show that the proposed MPPT technique is fast while tracking GMPP (around 2.4 s) and resilient against perturbations that may occur during the operation of the PV system. Moreover, the proposed MPPT method boasts other advantages such as ease of implementation, no dependence on the PV system and requires only two conventional sensors of voltage and current respectively
    corecore