531 research outputs found

    On the RND under Heston's stochastic volatility model

    Get PDF
    We consider Heston's (1993) stochastic volatility model for valuation of European options to which (semi) closed form solutions are available and are given in terms of characteristic functions. We prove that the class of scale-parameter distributions with mean being the forward spot price satisfies Heston's solution. Thus, we show that any member of this class could be used for the direct risk-neutral valuation of the option price under Heston's SV model. In fact, we also show that any RND with mean being the forward spot price that satisfies Hestons' option valuation solution, must be a member of a scale-family of distributions in that mean. As particular examples, we show that one-parameter versions of the {\it Log-Normal, Inverse-Gaussian, Gamma, Weibull} and the {\it Inverse-Weibull} distributions are all members of this class and thus provide explicit risk-neutral densities (RND) for Heston's pricing model. We demonstrate, via exact calculations and Monte-Carlo simulations, the applicability and suitability of these explicit RNDs using already published Index data with a calibrated Heston model (S\&P500, Bakshi, Cao and Chen (1997), and ODAX, Mr\'azek and Posp\'i\v{s}il (2017)), as well as current option market data (AMD)

    How Much Is Your Strangle Worth? On the Relative Value of the Strangle under the Black-Scholes Pricing Model

    Get PDF
    Trading option strangles is a highly popular strategy often used by market participants to mitigate volatility risks in their portfolios. We propose a measure of the relative value of a delta-Symmetric Strangle and compute it under the standard Black-Scholes-Merton option pricing model. This new measure accounts for the price of the strangle, relative to the Present Value of the spread between the two strikes, all expressed, after a natural re-parameterization, in terms of delta and a volatility parameter. We show that under the standard BSM model, this measure of relative value is bounded by a simple function of delta only and is independent of the time to expiry, the price of the underlying security or the prevailing volatility used in the pricing model. We demonstrate how this bound can be used as a quick benchmark to assess, regardless the market volatility, the duration of the contract or the price of the underlying security, the market (relative) value of the strangle in comparison to its BSM (relative) price. In fact, the explicit and simple expression for this measure and bound allows us to also study in detail the strangle’s exit strategy and the corresponding optimal choice for a value of delta

    Bayesian Modeling of COVID-19 Positivity Rate -- the Indiana experience

    Get PDF
    In this short technical report we model, within the Bayesian framework, the rate of positive tests reported by the the State of Indiana, accounting also for the substantial variability (and overdispeartion) in the daily count of the tests performed. The approach we take, results with a simple procedure for prediction, a posteriori, of this rate of ’positivity’ and allows for an easy and a straightforward adaptation by any agency tracking daily results of COVID-19 tests. The numerical results provided herein were obtained via an updatable R Markdown document

    The Generalized Gamma Distribution as a Useful RND under Heston’s Stochastic Volatility Model

    Get PDF
    We present the Generalized Gamma (GG) distribution as a possible risk neutral distribution (RND) for modeling European options prices under Heston’s stochastic volatility (SV) model. We demonstrate that under a particular reparametrization, this distribution, which is a member of the scale-parameter family of distributions with the mean being the forward spot price, satisfies Heston’s solution and hence could be used for the direct risk-neutral valuation of the option price under Heston’s SV model. Indeed, this distribution is especially useful in situations in which the spot’s price follows a negatively skewed distribution for which Black–Scholes-based (i.e., the log-normal distribution) modeling is largely inapt. We illustrate the applicability of the GG distribution as an RND by modeling market option data on three large market-index exchange-traded funds (ETF), namely the SPY, IWM and QQQ as well as on the TLT (an ETF that tracks an index of long-term US Treasury bonds). As of the writing of this paper (August 2021), the option chain of each of the three market-index ETFs shows a pronounced skew of their volatility ‘smile’, which indicates a likely distortion in the Black–Scholes modeling of such option data. Reflective of entirely different market expectations, this distortion in the volatility ‘smile’ appears not to exist in the TLT option data. We provide a thorough modeling of the option data we have on each ETF (with the 15 October 2021 expiration) based on the GG distribution and compare it to the option pricing and RND modeling obtained directly from a well-calibrated Heston’s SV model (both theoretically and also empirically, using Monte Carlo simulations of the spot’s price). All three market-index ETFs exhibited negatively skewed distributions, which are well-matched with those derived under the GG distribution as RND. The inadequacy of the Black–Scholes modeling in such instances, which involves negatively skewed distribution, is further illustrated by its impact on the hedging factor, delta, and the immediate implications to the retail trader. Similarly, the closely related Inverse Generalized Gamma distribution (IGG) is also proposed as a possible RND for Heston’s SV model in situations involving positively skewed distribution. In all, utilizing the Generalized Gamma distributions as possible RNDs for direct option valuations under the Heston’s SV is seen as particularly useful to the retail traders who do not have the numerical tools or the know-how to fine-calibrate this SV model

    On the RND under Heston’s stochastic volatility model

    Get PDF
    We consider Heston's (1993) stochastic volatility model for valuation of European options to which (semi) closed form solutions are available and are given in terms of characteristic functions. We prove that the class of scale-parameter distributions with mean being the forward spot price satisfies Heston's solution. Thus, we show that any member of this class could be used for the direct risk-neutral valuation of the option price under Heston's SV model. In fact, we also show that any RND with mean being the forward spot price that satisfies Hestons' option valuation solution, must be a member of a scale-family of distributions in that mean. As particular examples, we show that one-parameter versions of the {\it Log-Normal, Inverse-Gaussian, Gamma, Weibull} and the {\it Inverse-Weibull} distributions are all members of this class and thus provide explicit risk-neutral densities (RND) for Heston's pricing model. We demonstrate, via exact calculations and Monte-Carlo simulations, the applicability and suitability of these explicit RNDs using already published Index data with a calibrated Heston model (S\&P500, Bakshi, Cao and Chen (1997), and ODAX, Mrázek and Pospíšil (2017)), as well as current option market data (AMD)

    Continuous Statistical Models: With or Without Truncation Parameters?

    Get PDF
    Lifetime data are usually assumed to stem from a continuous distribution supported on [0, b) for some b ≤ ∞. The continuity assumption implies that the support of the distribution does not have atom points, particularly not at 0. Accordingly, it seems reasonable that with an accurate measurement tool all data observations will be positive. This suggests that the true support may be truncated from the left. In this work we investigate the effects of adding a left truncation parameter to a continuous lifetime data statistical model. We consider two main settings: right truncation parametric models with possible left truncation, and exponential family models with possible left truncation. We analyze the performance of some optimal estimators constructed under the assumption of no left truncation when left truncation is present, and vice versa. We investigate both asymptotic and finite-sample behavior of the estimators. We show that when left truncation is not assumed but is, in fact present, the estimators have a constant bias term, and therefore will result in inaccurate and inefficient estimation. We also show that assuming left truncation where actually there is none, typically does not result in substantial inefficiency, and some estimators in this case are asymptotically unbiased and efficient
    • …
    corecore