69 research outputs found

    How Much Does a Treedepth Modulator Help to Obtain Polynomial Kernels Beyond Sparse Graphs?

    Get PDF
    In the last years, kernelization with structural parameters has been an active area of research within the field of parameterized complexity. As a relevant example, Gajarsky et al. [ESA 2013] proved that every graph problem satisfying a property called finite integer index admits a linear kernel on graphs of bounded expansion and an almost linear kernel on nowhere dense graphs, parameterized by the size of a c-treedepth modulator, which is a vertex set whose removal results in a graph of treedepth at most c for a fixed integer c>0. The authors left as further research to investigate this parameter on general graphs, and in particular to find problems that, while admitting polynomial kernels on sparse graphs, behave differently on general graphs. In this article we answer this question by finding two very natural such problems: we prove that VERTEX COVER admits a polynomial kernel on general graphs for any integer c>0, and that DOMINATING SET does not for any integer c>1 even on degenerate graphs, unless NP is a subset of coNP/poly. For the positive result, we build on the techniques of Jansen and Bodlaender [STACS 2011], and for the negative result we use a polynomial parameter transformation for c>2 and an OR-cross-composition for c=2. As existing results imply that DOMINATING SET admits a polynomial kernel on degenerate graphs for c=1, our result provides a dichotomy about the existence of polynomial problems for DOMINATING SET on degenerate graphs with this parameter

    Triangle Packing in (Sparse) Tournaments: Approximation and Kernelization

    Get PDF
    Given a tournament T and a positive integer k, the C_3-Packing-T asks if there exists a least k (vertex-)disjoint directed 3-cycles in T. This is the dual problem in tournaments of the classical minimal feedback vertex set problem. Surprisingly C_3-Packing-T did not receive a lot of attention in the literature. We show that it does not admit a PTAS unless P=NP, even if we restrict the considered instances to sparse tournaments, that is tournaments with a feedback arc set (FAS) being a matching. Focusing on sparse tournaments we provide a (1+6/(c-1)) approximation algorithm for sparse tournaments having a linear representation where all the backward arcs have "length" at least c. Concerning kernelization, we show that C_3-Packing-T admits a kernel with O(m) vertices, where m is the size of a given feedback arc set. In particular, we derive a O(k) vertices kernel for C_3-Packing-T when restricted to sparse instances. On the negative size, we show that C_3-Packing-T does not admit a kernel of (total bit) size O(k^{2-epsilon}) unless NP is a subset of coNP / Poly. The existence of a kernel in O(k) vertices for C_3-Packing-T remains an open question

    Width Parameterizations for Knot-Free Vertex Deletion on Digraphs

    Get PDF
    A knot in a directed graph G is a strongly connected subgraph Q of G with at least two vertices, such that no vertex in V(Q) is an in-neighbor of a vertex in V(G)V(Q). Knots are important graph structures, because they characterize the existence of deadlocks in a classical distributed computation model, the so-called OR-model. Deadlock detection is correlated with the recognition of knot-free graphs as well as deadlock resolution is closely related to the Knot-Free Vertex Deletion (KFVD) problem, which consists of determining whether an input graph G has a subset S subseteq V(G) of size at most k such that G[VS] contains no knot. Because of natural applications in deadlock resolution, KFVD is closely related to Directed Feedback Vertex Set. In this paper we focus on graph width measure parameterizations for KFVD. First, we show that: (i) KFVD parameterized by the size of the solution k is W[1]-hard even when p, the length of a longest directed path of the input graph, as well as kappa, its Kenny-width, are bounded by constants, and we remark that KFVD is para-NP-hard even considering many directed width measures as parameters, but in FPT when parameterized by clique-width; (ii) KFVD can be solved in time 2^{O(tw)} x n, but assuming ETH it cannot be solved in 2^{o(tw)} x n^{O(1)}, where tw is the treewidth of the underlying undirected graph. Finally, since the size of a minimum directed feedback vertex set (dfv) is an upper bound for the size of a minimum knot-free vertex deletion set, we investigate parameterization by dfv and we show that (iii) KFVD can be solved in FPT-time parameterized by either dfv+kappa or dfv+p. Results of (iii) cannot be improved when replacing dfv by k due to (i)

    A New Framework for Kernelization Lower Bounds: The Case of Maximum Minimal Vertex Cover

    Get PDF
    In the Maximum Minimal Vertex Cover (MMVC) problem, we are given a graph G and a positive integer k, and the objective is to decide whether G contains a minimal vertex cover of size at least k. Motivated by the kernelization of MMVC with parameter k, our main contribution is to introduce a simple general framework to obtain lower bounds on the degrees of a certain type of polynomial kernels for vertex-optimization problems, which we call {lop-kernels}. Informally, this type of kernels is required to preserve large optimal solutions in the reduced instance, and captures the vast majority of existing kernels in the literature. As a consequence of this framework, we show that the trivial quadratic kernel for MMVC is essentially optimal, answering a question of Boria et al. [Discret. Appl. Math. 2015], and that the known cubic kernel for Maximum Minimal Feedback Vertex Set is also essentially optimal. On the positive side, given the (plausible) non-existence of subquadratic kernels for MMVC on general graphs, we provide subquadratic kernels on H-free graphs for several graphs H, such as the bull, the paw, or the complete graphs, by making use of the Erd?s-Hajnal property in order to find an appropriate decomposition. Finally, we prove that MMVC does not admit polynomial kernels parameterized by the size of a minimum vertex cover of the input graph, even on bipartite graphs, unless NP ? coNP / poly. This indicates that parameters smaller than the solution size are unlike to yield polynomial kernels for MMVC

    Using oracles for the design of efficient approximation algorithms

    Get PDF
    International audienceWe are interested here in oracle techniques for the design of approximation algo- rithms. Following the classical definition, an oracle is a black box capable of answering correctly and instantaneously any question. Several classical approximation scheme de- sign techniques (typically PTAS) can be revisited using oracle. Our objective in this work is to show that, conversely, oracle techniques are not limited to the design of PTAS. In particular, interactivity (using queries to oracle) may also lead to parameterized algorithm (whose complexity is exponential in a parameter, supposed to be "small"), that can be more practical than classical P T AS. Moreover, we aim at showing how it is possible to "degenerate" questions asked to the oracle to derive fast implementations of these interactive algorithms. These ideas will be illustrated on the classical makespan minimization on uniform machines problem (QCmax )

    Bridge-Depth Characterizes Which Structural Parameterizations of Vertex Cover Admit a Polynomial Kernel

    Get PDF
    We study the kernelization complexity of structural parameterizations of the Vertex Cover problem. Here, the goal is to find a polynomial-time preprocessing algorithm that can reduce any instance (G,k) of the Vertex Cover problem to an equivalent one, whose size is polynomial in the size of a pre-determined complexity parameter of G. A long line of previous research deals with parameterizations based on the number of vertex deletions needed to reduce G to a member of a simple graph class ?, such as forests, graphs of bounded tree-depth, and graphs of maximum degree two. We set out to find the most general graph classes ? for which Vertex Cover parameterized by the vertex-deletion distance of the input graph to ?, admits a polynomial kernelization. We give a complete characterization of the minor-closed graph families ? for which such a kernelization exists. We introduce a new graph parameter called bridge-depth, and prove that a polynomial kernelization exists if and only if ? has bounded bridge-depth. The proof is based on an interesting connection between bridge-depth and the size of minimal blocking sets in graphs, which are vertex sets whose removal decreases the independence number

    Kernelization for Graph Packing Problems via Rainbow Matching

    Full text link
    We introduce a new kernelization tool, called rainbow matching technique, that is appropriate for the design of polynomial kernels for packing problems. Our technique capitalizes on the powerful combinatorial results of [Graf, Harris, Haxell, SODA 2021]. We apply the rainbow matching technique on two (di)graph packing problems, namely the Triangle-Packing in Tournament problem (\TPT), where we ask for a directed triangle packing in a tournament, and the Induced 2-Path-Packing (\IPP) where we ask for a packing of kk induced paths of length two in a graph. The existence of a sub-quadratic kernels for these problems was proven for the first time in [Fomin, Le, Lokshtanov, Saurabh, Thomass\'e, Zehavi. ACM Trans. Algorithms, 2019], where they gave a kernel of O(k3/2)\mathcal{O}(k^{3/2}) vertices and O(k5/3)\mathcal{O}(k^{5/3}) vertices respectively. In the same paper it was questioned whether these bounds can be (optimally) improved to linear ones. Motivated by this question, we apply the rainbow matching technique and prove that \TPT admits an (almost linear) kernel of k1+O(1)logkk^{1+\frac{\mathcal{O}(1)}{\sqrt{\log{k}}}} vertices and that \IPP admits kernel of O(k)\mathcal{O}(k) vertices
    corecore