
Width Parameterizations for
Knot-Free Vertex Deletion on Digraphs
Stéphane Bessy
Université de Montpellier - CNRS, LIRMM, Montpellier, France
stephane.bessy@lirmm.fr

Marin Bougeret
Université de Montpellier - CNRS, LIRMM, Montpellier, France
marin.bougeret@lirmm.fr

Alan D. A. Carneiro
Universidade Federal Fluminense - Instituto de Computação, Niterói, Brazil
aaurelio@ic.uff.br

Fábio Protti
Universidade Federal Fluminense - Instituto de Computação, Niterói, Brazil
fabio@ic.uff.br

Uéverton S. Souza1

Universidade Federal Fluminense - Instituto de Computação, Niterói, Brazil
ueverton@ic.uff.br

Abstract
A knot in a directed graph G is a strongly connected subgraph Q of G with at least two vertices,
such that no vertex in V (Q) is an in-neighbor of a vertex in V (G) \ V (Q). Knots are important
graph structures, because they characterize the existence of deadlocks in a classical distributed
computation model, the so-called OR-model. Deadlock detection is correlated with the recognition
of knot-free graphs as well as deadlock resolution is closely related to the Knot-Free Vertex
Deletion (KFVD) problem, which consists of determining whether an input graph G has a subset
S ⊆ V (G) of size at most k such that G[V \ S] contains no knot. Because of natural applications in
deadlock resolution, KFVD is closely related to Directed Feedback Vertex Set. In this paper
we focus on graph width measure parameterizations for KFVD. First, we show that: (i) KFVD
parameterized by the size of the solution k is W[1]-hard even when p, the length of a longest directed
path of the input graph, as well as κ, its Kenny-width, are bounded by constants, and we remark
that KFVD is para-NP-hard even considering many directed width measures as parameters, but
in FPT when parameterized by clique-width; (ii) KFVD can be solved in time 2O(tw) × n, but
assuming ETH it cannot be solved in 2o(tw) × nO(1), where tw is the treewidth of the underlying
undirected graph. Finally, since the size of a minimum directed feedback vertex set (dfv) is an upper
bound for the size of a minimum knot-free vertex deletion set, we investigate parameterization by
dfv and we show that (iii) KFVD can be solved in FPT-time parameterized by either dfv + κ or
dfv + p. Results of (iii) cannot be improved when replacing dfv by k due to (i).

2012 ACM Subject Classification Mathematics of computing → Graph theory; Theory of computa-
tion → Parameterized complexity and exact algorithms

Keywords and phrases Knot, deadlock, width measure, FPT, W[1]-hard, directed feedback vertex
set

Digital Object Identifier 10.4230/LIPIcs.IPEC.2019.2

Related Version A full version of the paper is available at http://arxiv.org/abs/1910.01783.

1 corresponding author

© Stéphane Bessy, Marin Bougeret, Alan D. A. Carneiro, Fábio Protti, and Uéverton S. Souza;
licensed under Creative Commons License CC-BY

14th International Symposium on Parameterized and Exact Computation (IPEC 2019).
Editors: Bart M. P. Jansen and Jan Arne Telle; Article No. 2; pp. 2:1–2:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/248561842?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:stephane.bessy@lirmm.fr
mailto:marin.bougeret@lirmm.fr
mailto:aaurelio@ic.uff.br
mailto:fabio@ic.uff.br
mailto:ueverton@ic.uff.br
https://doi.org/10.4230/LIPIcs.IPEC.2019.2
http://arxiv.org/abs/1910.01783
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

2:2 Width Parameterizations for Knot-Free Vertex Deletion on Digraphs

Funding Supported by Grant E-26/203.272/2017, Rio de Janeiro Research Foundation (FAPERJ)
and by Grant 303726/2017-2, National Council for Scientific and Technological Development (CNPq).

Acknowledgements We thank Ignasi Sau for introducing Alan Carneiro to Stéphane Bessy and
Marin Bougeret.

1 Introduction

The study of the Knot-Free Vertex Deletion problem emerges from its application in
resolution of deadlocks, where a deadlock is detected in a distributed system and then a
minimum cost deadlock-breaking set must be found and removed from the system. More
precisely, distributed computations are usually represented by directed graphs called wait-for
graphs. In a wait-for graph G = (V,E), the vertex set V represents processes, and the set
E of directed arcs represents wait conditions [4]. An arc exists in E directed away from
vi ∈ V towards vj ∈ V if vi is blocked waiting for a signal from vj . The graph G changes
dynamically according to a set of prescribed rules (the deadlock model), as the computation
progresses. In essence, the deadlock model governs how processes should behave throughout
computation, i.e., the deadlock model specifies rules for vertices that are not sinks (vertices
with at least one out-neighbor) in G to become sinks [3] (vertices without out-neighbors).
The two main classic deadlock models are the AND model, in which a process vi can only
become a sink when it receives a signal from all the processes in N+(vi), where N+(vi)
stands for the set of out-neighbors of vi (a conjunction of resources is needed); and the OR
model, in which it suffices for a process vi to become a sink to receive a signal from at
least one of the processes in N+(vi) (a disjunction of resources is sufficient). Distributed
computations are dynamic, however deadlock is a stable property, in the sense that once
it occurs in a consistent global state of a distributed computation, it still holds for all the
subsequent states. Therefore, as it is typical in deadlock studies, G represents a static wait-for
graph that corresponds to a snapshot of the distributed computation in the usual sense of a
consistent global state [13]. Thus, the motivation of our work comes from deadlock resolution,
where deadlocks are detected into a consistent global state G, and must be solved through
some external intervention such as aborting one or more processes to break the circular wait
condition causing the deadlock.

Deadlock resolution problems differ according to the considered deadlock model, i.e.,
according to the graph structure that characterizes the deadlock situation. In the AND-
model, the occurrence of deadlocks is characterized by the existence of cycles [3, 5]. Therefore,
deadlock resolution by vertex deletion in the AND-model corresponds precisely to the
well-known Directed Feedback Vertex Set (DFVS) problem, proved to be NP-hard
in the seminal paper of Karp [24], and proved to be FPT in [14]. On the other hand,
the occurrence of deadlocks in wait-for graphs G working according to the OR-model are
characterized by the existence of knots in G [5, 21]. A knot in a directed graph G is a
strongly connected subgraph Q of G (with at least two vertices) such that there is no arc
uv of G with u ∈ V (Q) and v /∈ V (Q). Thus, deadlock resolution by vertex deletion in the
OR-model can be viewed as the following problem.

Knot-Free Vertex Deletion (KFVD)
Instance: A directed graph G = (V,E); a positive integer k.
Question: Determine if G has a set S ⊂ V (G) such that |S| ≤ k and G[V \ S] is
knot-free.
Notice that a digraph G is knot-free if and only if for any vertex v of G, v has a path to

a sink.

S. Bessy, M. Bougeret, A.D. A. Carneiro, F. Protti, and U. S. Souza 2:3

In [12], Carneiro, Souza, and Protti proved that KFVD is NP-complete; and, in [11], it
was shown that KFVD is W[1]-hard when parameterized by k.

KFVD is closely related to DFVS not only because of their relation to deadlocks, but
also some structural similarities between them: the goal of DFVS is to obtain a direct
acyclic graph (DAG) via vertex deletion (in such graphs all maximal directed paths end
at a sink); the goal of KFVD is to obtain a knot-free graph, and in such graphs for every
vertex v there exists at least one maximal path containing v that ends at a sink. Finally,
every directed feedback vertex set is a knot-free vertex deletion set; thus an optimum for
DFVS provides an upper bound for KFVD. Although Directed Feedback Vertex Set
is a well-known problem, this is not the case of Knot-Free Vertex Deletion, which we
propose to analyze more deeply in this work.

Let S be a solution for KFVD, and let Z be the set of sinks in G[V \ S]. One can see
that any v ∈ V \ S has a path (that does not use any vertex in S) to a vertex in Z. Thus,
KFVD can be seen as the problem of creating a set Z of sinks (doing at most k vertex
removals) such that every remaining vertex has a path (in G[V \ S]) to a vertex in Z. In
this paper, we denote the set of deleted vertices by S, and the set of sinks in G[V \ S] by Z.

To get intuition on KFVD, note that the choice of the vertices to be removed must be
carefully done, since the removal of a subset of vertices can turn some strongly connected
components into new knots that will need to be broken by the removal of some internal
vertices. Ideally, it is desirable to solve the current knots by removing as few vertices as
possible for each knot, without creating new ones. Unfortunately, the generation of other
knots can not always be avoided.

In [10, 12], Carneiro, Souza, and Protti present a polynomial-time algorithm for KFVD
in graphs with maximum degree three. They also show that the problem is NP-complete
even restricted to planar bipartite graphs G with maximum degree four. Later, in [11], a
parameterized analysis of KFVD is presented, where it was shown that: KFVD is W[1]-hard
when parameterized by the size of the solution; and it can be solved in 2k logϕnO(1) time,
but assuming SETH it cannot be solved in (2− ε)k logϕnO(1) time, where ϕ is the size of the
largest strongly connected subgraph.

Since the introduction of directed treewidth, much effort has been devoted to identify
algorithmically useful digraph width measures [26]. Useful width measures imply polynomial
time tractability for many combinatorial problems on digraphs of constant width. Since
KFVD is W[1]-hard when parameterized by k, in this paper we investigate the ecology
of width measures in order to find useful parameters to solve KFVD in FPT time. First,
taking k as parameter, we show that KFVD remains W[1]-hard even on instances with
both longest directed path and K-width bounded by constants. From the same reduction, it
follows that KFVD is para-NP-hard even considering many width measures as parameters,
such as directed treewidth and DAG-width. Contrasting with the hardness of KFVD
on several directed width measure parameterizations, we show that KFVD is FPT when
parameterized by the clique-width of the underlying undirected graph; and it can be solved
in 2O(tw)×n time, but assuming ETH it cannot be solved in 2o(tw)×nO(1) time, where tw is
the treewidth of the underlying undirected graph. After that, we consider the most natural
width parameter related to KFVD, the size of a minimum directed feedback vertex set
(dfv). Such a parameter is at the same time a measure of the distance from the input graph
to a DAG as well as an upper bound for the size of a minimum knot-free vertex deletion
set. Finally, we show that KFVD can be solved in FPT time either parameterized by dfv
and K-width, or dfv and the length of a longest directed path. The complexity of KFVD
parameterized only by dfv remains open.

IPEC 2019

2:4 Width Parameterizations for Knot-Free Vertex Deletion on Digraphs

In the rest of this section we give necessary definitions and concepts used in this work.
In Section 2 we present some useful observations and preliminary results. In Section 3
we discuss digraph width measures and show the W[1]-hardness. In Section 4 we discuss
the consequences of treewidth parameterization. Finally, Section 5 we explore the directed
feedback vertex set number as a parameter.

Due to space constraints, some proofs are omitted.

Additional notation. We use standard graph-theoretic and parameterized complexity nota-
tions and concepts, and any undefined notation can be found in [9, 17]. We consider here
directed graphs. Given a vertex v and a subset of vertices Z, we say that there is a path
from v to Z iff there exists z ∈ Z such that there is a vz-(directed) path. For v ∈ V (G),
let D(v) denote the set of descendants of v in G , i.e. nodes that are reachable from v by
a non-empty directed path. Given a set of vertices C = {v1, v2, . . . , vp} of G, we define
D(C) =

⋃p
i=1D(vi). Let A(vi) denote the set of ancestors of vi in G, i.e., nodes that reach

vi through a non-empty directed path. We also define A[vi] = A(vi) ∪ {vi}, and given a
set of vertices C = {v1, v2, . . . , vp} of G, we define A(C) =

⋃p
i=1A(vi). For a vertex v of G,

the out-neighborhood of v is denoted by N+(v) = {u|vu ∈ E}, and given a set of vertices
C = {v1, v2, . . . , vp}, we define N+(C) =

⋃p
i=1N

+(vi)\C. We refer to a Strongly Connected
Component as an SCC. A knot in a directed graph G is an SCC Q of G with at least two
vertices such that there is no arc uv of G with u ∈ V (Q) and v /∈ V (Q). Finally, a sink (resp.
a source) of G is a vertex with out-degree 0 (resp. in-degree 0). Given a subset of vertices S,
we denote GS = G[S] and S̄ = V \ S. Thus, GS̄ denote the graph obtained by removing S.

We denote by dfv(G) the size of a minimum directed feedback vertex set of G. We
generally use F to denote a directed feedback vertex set and by R the remaining subset,
i.e., R = V \ F . The length of a longest directed path of G is denoted by p(G). The
Kenny-width [18] or K-width of G is denoted by κ(G) and is the maximum number of distinct
directed st-paths in G over all pairs of distinct vertices s, t ∈ V (G), where two st-paths are
distinct iff they do not use the exact same set of arcs. For any function g (like dfv, κ, p),
g(G) will be denoted simply by g when the considered graph G can be deduced from the
context. In what follows we denote by g-KFVD the KFVD problem parameterized by g
(g = k denotes the parameterization by the solution size).

2 Preliminaries

In this section we present some useful remarks and reduction rules. Remind that in the
decision version of the problem we are given G and a positive integer k.
The first observation is immediate, as if we can make the graph acyclic, then it will be
knot-free.

I Observation 1. If k ≥ dfv(G) then G is a yes-instance.

The two others observations are less obvious but rather natural.

I Observation 2. Let S be a solution with set of sinks Z in GS̄, and s ∈ S. Let S′ = S \ {s}
and Z ′ be the set of sinks of GS̄′ . If there is a path from s to Z ′ in GS̄′ then S′ is also a
solution.

Informally, after deleting a vertex s, we can add s back to the graph when it is certain that
s has a path to a sink in the current graph. This is detailed by the following lemma and its
corollary.

S. Bessy, M. Bougeret, A.D. A. Carneiro, F. Protti, and U. S. Souza 2:5

I Lemma 1. Let S be a solution with set of sinks Z in GS̄. If there exists s ∈ S with
s /∈ N+(Z), then S′ = S \ {s} is also a solution.

I Corollary 2. In any optimal solution S with set of sinks Z in GS̄, we have N+(Z) = S.

I Observation 3. Let S be a knot-free vertex deletion with set of sinks Z in GS̄. If |S| ≤ k
then for any vertex v with d+(v) > k it holds that v /∈ Z.

To complete the previous observations, we can design two general reduction rules.

I Reduction Rule 1. If v ∈ V (G) is an SCC of size one then remove A[v].

Proof. Let G′ be the graph obtained by removing A[v]. Let of first show that (G, k) is a
yes-instance implies that (G′, k) is also a yes-instance. Let S be a solution of G of size at
most k with set of sinks Z in GS̄ . Let S′ = S \ A[v], and Z ′ the set of sinks in G′

S̄′ . Let
us prove that every u ∈ V (G′

S̄′) has a path ot Z ′ in G′
S̄′ . Let u ∈ V (G′

S̄′). As u is also in
V (GS̄), there is a uz-path P in GS̄ where z ∈ Z. As u /∈ A[v], V (P) ∩ A[v] = ∅ and thus,
the path P still exists in G′

S̄′ . Moreover, u /∈ A[v] implies that N+(z) ∩A[v] = ∅, and thus
that N+(v) ⊆ S′, implying that z ∈ Z ′.

Let us now consider the reverse implication, and let S′ be a solution of G′ of size at
most k with set of sinks Z ′ in G′

S̄′ and prove that S′ is a solution of G. Let us start with
u ∈ V (GS̄′) \ A[v]. As S′ is a solution of G′ and u ∈ V (G′

S̄′), there is uz′-path P ′ in G′
S̄′

where z′ ∈ Z ′, and this path still exists in GS̄′ . As N+(z′) ∩ A[v] = ∅, z′ is still a sink in
GS̄′ and we are done. Consider now a vertex u ∈ V (GS̄′) ∩A[v]. As S′ ∩A[v] = ∅, there is
uv-path P in GS̄′ . If N+(v) ⊆ S′ then v is a sink in GS̄′ and we are done. Otherwise, let
w ∈ N+(v) \S′. As v is a SCC of size 1, N+(v)∩A[v] = ∅, implying that w ∈ V (GS̄′) \A[v],
and thus according to the previous case w has a path to a sink in GS̄′ . J

The previous reduction rule removes in particular sources and sinks, as they are SCC’s of
size one.

I Reduction Rule 2. Let Ui be a strongly connected component of G with strictly more than
k out-neighbors in G[V \ V (Ui)]. Then we can safely remove A[Ui].

Proof. Let G′ be the graph obtained by removing A[Ui]. Let us first show that (G, k) is a
yes-instance implies that (G′, k) is also a yes-instance. Let S be a solution of G of size at
most k and Z the set of sinks in GS̄ . Let S′ = S \A[Ui], and Z ′ the set of sinks in G′S̄′ . Using
the same argument (replacing A[v] by A[Ui]) as in the first part of proof of Reduction 1, we
get that every u ∈ V (G′

S̄′) has a path ot Z ′ in G′
S̄′ .

Let us now consider the reverse implication, and let S′ be a solution of G′ of size at
most k with set of sinks Z ′ in G′

S̄′ and prove that S′ is a solution of G. Let us start with
u ∈ V (GS̄′) \A[v]. As S′ is a solution of G′ there is uz′-path P ′ in G′

S̄′ where z′ ∈ Z ′, and
this path still exists in GS̄′ . As N+(z′) ∩ A[Ui] = ∅, z′ is still a sink in GS̄′ and we are
done. Consider now a vertex u ∈ V (GS̄′) ∩A[Ui]. As S′ ∩A[Ui] = ∅, there is uUi-path P in
GS̄′ . As Ui has strictly more than k out-neighbors in G[V \ V (Ui)], there is arc from Ui to
w ∈ V (GS̄′) and thus according to the previous case w has a path to a sink in GS̄′ . J

3 W[1]-hardness and directed width measures

k-KFVD was shown to be W[1]-hard using a reduction from k-Multicolored Independ-
ent Set (k-MIS) [11]. However, the gadget used in this reduction to encode each color
class has a longest directed path of unbounded length. First, we remark that it is possible to
modify the reduction in order to prove that k-KFVD is W[1]-hard even if the input graph
G has longest path length and K-width bounded by constants.

IPEC 2019

2:6 Width Parameterizations for Knot-Free Vertex Deletion on Digraphs

I Theorem 3. There is a polynomial-time reduction, preserving the size of the parameter,
from k-MIS to k-KFVD such that the resulting graph has longest directed path of length at
most 5 and K-width equal to 2.

Proof. Let (G′, k) be an instance of Multicolored Independent Set, and let
V 1, V 2, . . . , V k be the color classes of G′. We construct an instance (G, k) of Knot-Free
Vertex Deletion with bounded longest path length and K-width as follows.

1. for each vi ∈ V (G′), create a directed cycle of size two with the vertices wi and zi in G;
2. for a color class V j in G′, create one vertex uj ;
3. for each vertex zi in G corresponding to a vertex vi of the color class V j in G′, create an

arc from zi to uj and from uj to zi.
4. for each vertex wi in G corresponding to a vertex vi of the color class V j in G′, create an

arc from uj to wi
5. for each edge ep = (vi, vl) in G′ create a set Xp with two artificial vertices xip and xlp and

the arcs xipxlp and xlpxip;
6. for each artificial vertex xip, create an edge from xip towards zi in G.

Finally, set Yj = {wi, zi : vi ∈ V j}∪ {uj}, Yj is the set of vertices of G corresponding to
the vertices of G′ in the same color class V j . Notice that, the longest path of G has at most
5 vertices, and for any pair s, t in V (G) there are at most 2 distinct directed st-paths in G.

Now, suppose that now S′ is a k-independent set with exactly one vertex of each set V j
of G′. By construction, G has k knots which are G[Y1], . . . , G[Yk]. Thus, at least k vertex
removals are necessary to make G free of knots. We set S = {zi | vi ∈ S′} and show that
G[V \ S] is knot-free. For j = 1, . . . , k the vertex wj is a sink in G \ S, and every vertex of
Yj \ S still reaches wj . Now, as S′ is a k-independent set of G′ each set Xp in G is adjacent
to at least one vertex that is not in S. Hence, each Xp will still have at least one arc pointing
outside Xp, i.e., no new knots are created, and G \ S is knot-free.

Conversely, suppose that G has a set of vertices S of size k such that G[V \S] is knot-free.
In particular S has to contain exactly one vertex of each of the knot Yj , for j = 1, . . . , k.
Since at least one sink has to be created in order to untie the knot Yj , and since the only
vertices of Yj with only one out-neighbor are the w’s ones, S has to contain a vertex zi of
each set Y1, . . . , Yk. Moreover by deleting one vertex zi in a knot Yj , the vertex wj is turned
into sink and every other vertex of the same knot still has a path to wj . Since G[V \ S]
is knot-free, no new knots are created by the deletion of S; thus, every SCC Xp will still
have at least one arc pointing outside it. So, we set S′ = {vi | zi ∈ S}. Since each SCC Xp

corresponds to an edge of G′, and at least one vertex of each edge of G′ is not in S′, the
set S′ contains no pair of adjacent vertices. Moreover, S′ is composed by one vertex of each
knot, which corresponds to a color of G′. Therefore, S′ is a multicolored independent set of
G′. J

I Corollary 4. k-KFVD is W[1]-hard even if the input graph has longest directed path of
length at most 5 and K-width equal to 2.

After the introduction of the notion of directed treewidth (dtw) [23], a large number
of width measures in digraphs were developed, such as: cycle rank [20] (cr); directed
pathwidth [2] (dpw); zig-zag number [25] (zn); Tree-Zig-Zag number [26] (Tzn); Kelly-
width [22] (Kelw); DAG-width [6] (dagw); D-width [29] (Dw); weak separator number [26]
(s); entanglement [7] (ent); DAG-depth [18] (ddp). However, if a graph problem is hard when
both the longest directed path length and the K-width are bounded, then it is hard for all
these measures (see Figure 1).

S. Bessy, M. Bougeret, A.D. A. Carneiro, F. Protti, and U. S. Souza 2:7

Tzn(G) dtw(G) dagw(G)

Kelw(G)

zn(G)

Dw(G)s(G)

ddp(G) cr(G)

ent(G)

ddp(G)

dfv(G)

κ(G)

p(G)
[26]

[26]

[22]

[6]

[23]

[1]

[20]

[25]

[18]

[6]

[28]

[25]

[20]

[19]

[19]

[18]

[18]

Figure 1 A hierarchy of digraph width measure parameters. α→ β indicates that α(G) ≤ f(β(G))
for any digraphG and some function f . More details about the relationships between these parameters
can be found in the references corresponding to each arrow.

Therefore, from the reduction presented in Theorem 3 we can observe that KFVD is
para-NP-hard with respect to all these width measures, and k-KFVD is W[1]-hard even
on inputs where such width measures are bounded. Thus, it seems to be extremely hard
to identify nice width parameters for which KFVD can be solved in FPT-time or even in
XP-time. Fortunately, there remain some parameters for which, at least, XP-time solvability
is achieved. One of them is the directed feedback vertex set number (dfv). This invariant is an
upper bound on the size of a minimum knot-free vertex deletion set, so XP-time algorithms
are trivial. This parameter is discussed in more detail in Section 5.

Another interesting width parameter for directed graphs G that is not bounded by a
function of the K-width and the length of a longest directed path is the clique-width of G.
Courcelle et al. [16] showed that every graph problem definable in LinEMSOL can be solved
in time f(w)× nO(1) on graphs with clique-width at most w, when a w-expression is given
as input. Using a result of Oum [27], the same follows even if no w-expression is given.

I Proposition 5. [15] There is a monadic second-order formula expressing the following
property of vertices x, y and of a set of vertices X of a directed graph G: “x, y ∈ X and there
is a directed path from x to y in the subgraph induced by X”.

From Proposition 5 one can show that KFVD is LinEMSOL-definable. Thus Theorem 6
holds.

I Theorem 6. KFVD is FPT when parameterized by clique-width of the underlying undir-
ected graph.

The fixed-parameter tractability for clique-width parameterization implies fixed-parameter
tractability of KFVD for many other popular parameters. For example, it is well-known
that the clique-width of a directed graph G is at most 22tw(G)+2 + 1, where tw(G) is the
treewidth of the underlying undirected graph (see [15, Proposition 2.114]). However, although
Theorem 6 implies the FPT-membership of the problem parameterized by the treewidth of
the underlying undirected graph, the dependence on tw(G) provided by the model checking
framework is huge. So, it is still a pertinent question whether such a parameterized problem
admits a single exponential algorithm, which is discussed in Section 4.

4 The treewidth of the underlying undirected graph as parameter

Given a tree decomposition T , we denote by t one node of T and by Xt the vertices contained
in the bag of t. We assume w.l.o.g that T is a nice tree decomposition (see [17]), that is,
we assume that there is a special root node r such that Xt = ∅ and all edges of the tree
are directed towards r and each node t has one of the following four types: Leaf, Introduce
vertex, Forget vertex, and Join.

IPEC 2019

2:8 Width Parameterizations for Knot-Free Vertex Deletion on Digraphs

Based on the following results we can assume that we are given a nice tree decomposition
of G.

I Theorem 7. [8] There exists an algorithm that, given an n-vertex graph G and an integer
k, runs in time 2O(k) × n and either outputs that the treewidth of G is larger than k, or
constructs a tree decomposition of G of width at most 5k + 4.

I Lemma 8. [17] Given a tree decomposition (T, {Xt}t∈V (T)) of G of width at most k, one
can in time O(k2 ·max(|V (T)|, |V (G)|)) compute a nice tree decomposition of G of width at
most k that has at most O(k|V (G)|) nodes.

Now we are ready to use a nice tree decomposition in order to obtain an FPT-time
algorithm with single exponential dependency on tw(G) and linear with respect to n.

I Theorem 9. Knot-Free Vertex Deletion can be solved in 2O(tw) × n time, but
assuming ETH there is no 2o(tw)nO(1) time algorithm for KFVD, where tw is the treewith
of the underlying undirected graph of the input G.

Proof. Let T = (T, {Xt}t∈V (T)) be a nice tree decomposition of the input digraph G, with
width equal to tw. First, we consider the following additional notation and definitions: t
is the index of a bag of T ; Gt is the graph induced by all vertices v ∈ Xt′ such that either
t′ = t or Xt′ is a descendant of Xt in T ; Given a knot-free vertex deletion set S, for any bag
Xt there is a partition of Xt into St, Zt, Ft, Bt where

St (removed) is the set of vertices of Xt that are going to be removed (St = S ∩Xt);
Zt (sinks) is the set of vertices of Xt that are going to be turned into sinks after the
removal of S;
Ft (free/released) is the set of vertices of Xt that, after the removal of S, are going to
reach a sink that belongs to V (Gt);
Bt (blocked) is the set of vertices of Xt that, after the removal of S, are going to reach
no sink that belongs to V (Gt);

Let Y ⊆ Xt. We denote by At(Y) the set of vertices in Ft that reach some vertex of Y in
the graph induced by V (Gt) \ St.

The recurrence relation of our dynamic programming has the signature C[t, St, Zt, Ft, Bt],
representing the minimum number of vertices in Gt that must be removed in order to produce
a graph such that for every remaining vertex v either v reaches a vertex in Bt (meaning that
it may still be released in the future) or v reaches a vertex that became a sink (possibly
the vertex itself), where every vertex in St is removed, every vertex in Zt becomes a sink,
every vertex in Ft will have a path to a sink in Gt, and St, Zt, Ft, Bt form a partition of Xt.
Notice that the generated table has size 4tw × tw × n, and when t = r, Xt = ∅ and therefore
C[r, ∅, ∅, ∅, ∅] contains the size of a minimum knot-free vertex deletion set of Gr = G.

The recurrence relation for each type of node is described as follows.
First, notice that if v ∈ Zt and there is an out-neighbor w of v that is not in St, there is

an inconsistency, i.e. w must be deleted (must belong to St). In addition, if v ∈ Bt but has
an out-neighbor in Zt∪Ft, there is another inconsistency (v is not blocked), and if v ∈ Ft but
the removal of St ∪Bt turns v into an isolated vertex, v is not released, and it must belong
to Bt. For the inconsistent cases, C[t, St, Zt, Ft, Bt] = +∞. Such cases can be recognized
and treated by simple preprocessing in linear time on the size of the table. Therefore, we
consider next only consistent cases.
Leaf Node: If Xt is a leaf node then Xt = ∅. Therefore

C[t, ∅, ∅, ∅, ∅] = 0.

S. Bessy, M. Bougeret, A.D. A. Carneiro, F. Protti, and U. S. Souza 2:9

Insertion Node: Let Xt be a node of T with a child Xt′ such that Xt = Xt′ ∪ {v} for some
v /∈ Xt′ . We have the following:

C[t, St, Zt, Ft, Bt] =

1) case v ∈ St :
– C[t′, St \ {v}, Zt, Ft, Bt] + 1,
2) case v ∈ Zt :
– minA′⊆At(v){C[t′, St, Zt \ {v}, Ft \A′, Bt ∪A′]},
3) case v ∈ Ft :
– minA′⊆At(v){C[t, St, Zt, Ft \ {A′ ∪ {v}}, Bt ∪A′]},
4) case v ∈ Bt :
– C[t′, St, Zt, Ft, Bt \ {v}]

.

Recall that At(v) is the set of vertices in Ft that reach v in the graph induced by
V (Gt) \ St, i.e., the set of vertices that can be released by v if it was blocked in Gt′ . Also
note that, for simplicity, we consider only consistent cases, thus in case 2 it holds that
N+(v) ∩Xt ⊆ St, in case 3 it holds that N+(v) ∩ (Zt ∪ Ft) 6= ∅, and in case 4 it holds
that N+(v) ∩ {Zt ∪ Ft} = ∅.

Forget Node: Let Xt be a forget node with a child Xt′ such that Xt = Xt′ \ {v}, for some
v ∈ Xt′ . The forget node selects the best scenario considering all the possibilities for the
forgotten vertex, discarding cases that lead to non-feasible solutions. In this problem,
unfeasible cases are identified when the forgotten vertex v of Xt′ was blocked and reached
no other node in Bt. Hence:

If N+(v) ∩Bt′ 6= ∅ then

C[t, St, Zt, Ft, Bt] = min

C[t′, St ∪ {v}, Zt, Ft, Bt],
C[t′, St, Zt ∪ {v}, Ft, Bt],
C[t′, St, Zt, Ft ∪ {v}, Bt],
C[t′, St, Zt, Ft, Bt ∪ {v}]

.

If N+(v) ∩Bt′ = ∅ then

C[t, St, Zt, Ft, Bt] = min

C[t′, St ∪ {v}, Zt, Ft, Bt],
C[t′, St, Zt ∪ {v}, Ft, Bt],
C[t′, St, Zt, Ft ∪ {v}, Bt],

.

Join Node: Let Xt be a join node with children Xt1 and Xt2 , such that Xt = Xt1 = Xt2 .
For any optimal knot-free vertex deletion set S of G it holds that V (Gt)∩S = {V (Gt1)∩
S} ∪ {V (Gt2) ∩ S}. Clearly, if St ⊆ S then we can assume that St = St1 = St2 . In
addition, Zt = Zt1 = Zt2 otherwise we will have an inconsistency. Also note that a vertex
is released in Gt if it reaches a vertex (possibly the vertex itself) that is released either in
Gt1 or Gt2 . Thus:

C[t, St, Zt, Ft, Bt] = min
∀F ′,F ′′

{C[t1, St, Zt, F ′, B′] + C[t2, St, Zt, F ′′, B′′]} − |St|,

where At(F ′ ∪ F ′′) = Ft.

Note that At(F ′ ∪ F ′′) is the set of vertices that either are released in Gti (i ∈ {1, 2}) or
can be released in Gt by vertices of F ′ ∪ F ′′, even if they are blocked in both Gt1 and

IPEC 2019

2:10 Width Parameterizations for Knot-Free Vertex Deletion on Digraphs

Gt2 ; this can occur, for example, if a blocked vertex v reaches another blocked node w in
Gt1 , and in Gt2 vertex w is released.
Now, in order to run the algorithm, one can visit the bags of T in a bottom-up fashion,
performing the queries described for each type of node. Since the reachability between
the vertices of a bag can be stored in a bottom-up manner on T , one can fill each entry of
the table in 2O(tw) time, and as the table has size 2O(tw) × n, the dynamic programming
can be performed in time 2O(tw) × n.
Regarding correctness, let S∗ be a minimum knot-free vertex deletion set of a digraph G
with a tree decomposition T . Let S∗t , Z∗t , F ∗t , B∗t be a partition of the vertices of Xt into
removed, sinks, released and blocked, with respect to Gt after the removal of S∗. Note
that S∗t = Xt ∩ S∗.

Fact 1. There is no vertex w ∈ V (Gt)\Xt such that w reaches a vertex v ∈ B∗t in G[V (Gt)\
St] and w ∈ S∗. Otherwise, since every vertex in B∗t will reach a sink that is not in Gt,
by Observation 2 one can remove from S∗ every vertex that reaches B∗t in G[V (Gt) \ St],
obtaining a subset of S∗ which is also a knot-free vertex deletion set, contradicting the
fact that S is minimum.
This fact implies that the paths considered to compute At(v)/At(F ′ ∪ F ′)’ can in fact be
used to release blocked vertices. Similarly, Fact 2 also holds.

Fact 2. Let Ŝ be a set for which the minimum is attained in the definition of
C[t, S∗t , Z∗t , F ∗t , B∗t]. Then Ŝ ∪ (S∗ \ V (Gt)) is also a solution (which is minimum)
for KFVD. Otherwise, from Ŝ ∪ (S∗ \ V (Gt)) we can also obtain a knot-free vertex
deletion set smaller than S∗, which is a contradiction.
Fact 2 implies that we have stored enough information. At this point, the correctness of
the recursive formulas is straightforward.
Finally, to show a lower bound based on ETH, we can transform an instance F of 3-SAT
into an instanceGF of KFVD using the polynomial reduction presented in [11, Theorem 4],
obtaining in polynomial time a graph with |V | = 2n + 2m, and so tw = O(n + m).
Therefore, if KFVD can be solved in 2o(tw)|V |O(1) time, then we can solve 3-SAT in
2o(n+m)(n+m)O(1) time, i.e., ETH fails. J

5 The size of a minimum directed feedback vertex set as parameter

Recall that k-KFVD is W [1]-hard (for fixed K-width and longest directed path) and that, as
noticed in Observation 1, we can assume k < dfv(G). This motivates us to determining the
status of dfv-KFVD. In this section, we present two FPT-algorithms. Both with the size
of a minimum directed feedback vertex set as parameter but with an aggregate parameter,
the K-width, κ(G), for the first one and the length of a longest directed path, p(G), for the
second one. Since finding a minimum directed feedback vertex set F in G can be solved
in FPT-time (with respect to dfv) [14], we consider that F , a minimum DFVS, is given.
Namely, we show that both (dfv, κ)-KFVD and (dfv, p)-KFVD are FPT.

At this point, we need to define the following variant of KFVD.

Disjoint Knot-Free Vertex Deletion (Disjoint-KFVD)
Instance: A directed graph G = (V,E); a subset X ⊆ V ; and a positive integer k.
Question: Determine if G has a set S ⊂ V (G) such that |S| ≤ k, S∩X = ∅ and G[V \S]
is knot-free.

We call forbidden vertices the vertices of the set X. It is clear that Disjoint-KFVD
generalizes KFVD by taking X = ∅.

S. Bessy, M. Bougeret, A.D. A. Carneiro, F. Protti, and U. S. Souza 2:11

Let us now define two more steps that are FPT parameterized by dfv and that will be
used for both (dfv, κ)-KFVD and (dfv, p)-KFVD. The next step will allow us to consider
that the vertices of F are forbidden. We need the following straightforward observation.

I Observation 4. Let (G, k) be an instance of KFVD and v ∈ V (G).
if (G, k) is a yes-instance and there exists a solution S with v ∈ S, then (G \ {v}, k − 1)
is a yes-instance
if (G \ {v}, k − 1) is a yes-instance then (G, k) is a yes-instance

I Branching 1 (On the directed feedback vertex set F). Let (G,F, k) be an instance of
dfv-KFVD. In time 3dfv×O(n) we can build 3dfv instances (Gi, F i1, Xi, ki) of dfv-Disjoint-
KFVD as follows. We consider all possible partitions of F into three parts: F1, the set of
vertices of F that will not be removed (i.e., they become forbidden); F2, the set of vertices in
F that will be removed; and F3, the set of vertices in F that will be turned into sinks. For
each such a partition (indicated by the index i), we remove the set Y i = F i2 ∪ N+(F i3) of
vertices and we apply exhaustively Reduction Rules 1 and 2 (see Section 2). We denote by
Gi the obtained graph, Xi = F i1, and ki = k − |Y |.

According to Observation 4, it is clear that (G,F, k) is a yes-instance of dfv-KFVD if and
only if one of the instances (Gi, F i1, Xi, ki), 1 ≤ i ≤ 3dfv, of dfv-Disjoint-KFVD is a
yes instance. Since there are at most 3dfv partitions of F , the branching reduction can be
performed in FPT time. Although at this point Xi = F i1, in the next steps some vertices of
V (G) \F1 may become forbidden and therefore should be added to Xi. Also, from this point
forward, we assume that we are given an instance (G,F1, X, k) of dfv-Disjoint-KFVD.

Notice that after applying Reduction Rule 1 (Section 2), each strongly connected com-
ponent of G is at least of size two. Thus, each of them must contain at least one cycle;
therefore, the number of strongly connected components of G is bounded by dfv. Moreover,
for any strongly connected component U of G, Reduction Rule 2 gives an upper bound for
the number of vertices in N+(V (U)) (i.e., vertices that are not in U but it is out-neighbour
of some vertex in U). This implies that G has at most dfv × k ≤ dfv2 such vertices between
its strongly connected components. This observation leads to a branching rule.

I Branching 2 (On strongly connected components). Let SH be the set of vertices that
are extremities of arcs between the strongly connected components of G. We have |SH | ≤
2× dfv × k ≤ 2× dfv2 and we can branch in FPT-time trying all possible partitions of SH
into two sets: S1, the set of vertices to be deleted in G such that |S1| ≤ k; and S2 = SH \ S1,
the set of vertices marked as forbidden, and then added into X.

Notice that this step involves a 2|SH | branching. At this point, we may consider that we
have an instance (G,F,X, k) where F ⊆ X and such that for any arc uv between two SCC’s
Ui and Uj , {u, v} ⊆ X. We call such an instance as a nice instance.

I Lemma 10 (After cleaning of Branching 2). If there is an algorithm running in time
g(dfv) × poly(n) for dfv-Disjoint-KFVD restricted to nice instances that are strongly
connected, then there is an FPT algorithm running in time g(dfv)× poly(n)× c.n.log(dfv)
(where c is a constant) to solve dfv-Disjoint-KFVD for any nice instance.

Proof. Let (G,F,X, k) be a nice instance and S be a solution. Let U = {U1, . . . , Us} be the
partition of V (G) where each Ui is an SCC, and let K = {Ui : Ui is a knot}. Without loss of
generality we can assume that K = {U1, . . . , Ut} for some t ≤ s. Let Si = S ∩Ui. Notice that
if S is a solution then for any i ∈ [t], Si is a solution of (G[Ui], F ∩Ui, X ∩Ui, |Si|). Moreover,
for any solutions S′i to (G[Ui], F ∩Ui, X ∩Ui, |S′i|) where

∑t
i=1 |S′i| ≤ k, S′ =

⋃t
i=1 S

′
i will be

IPEC 2019

2:12 Width Parameterizations for Knot-Free Vertex Deletion on Digraphs

a solution to (G,F,X, k) because vertices of some Uj /∈ K will still have a path to a set Ui ∈ K
in GS̄′ since any arc between two SCC’s has forbidden endpoints. Thus, given a nice instance
(G,F,X, k) and an algorithm A for a nice instance restricted to one SCC, for any Ui ∈ K we
perform a binary search to find the smallest ki such that A(G[Ui], F ∩Ui, X ∩Ui, ki) answers
yes, and we answer yes iff

∑t
i=1 ki ≤ k. J

From Lemma 10, we may assume that we have an instance (G,F,X, k) such that F ⊆ X
and G is strongly connected (there is only one SCC). We call such an instance as a super
nice instance.

5.1 Combining DFVS-number and K-width
In this section, we prove that (dfv, κ)-Disjoint-KFVD restricted to super nice instances is
FPT.

Let F = {v1, . . . , vdfv}. For every pair of integers i, j with 1 ≤ i, j ≤ dfv we define Hi,j

as the (i, j)-connectivity set, that is, the set of vertices which are contained in a directed
path from vi to vj in the induced subgraph G[V \ (F \ {vi, vj})] (if i = j then Hi,i is the
set of vertices contained in a cycle in G[V \ (F \ {vi})]). Let us define a set B on which we
will later branch in a way to ensure connectivity among different connectivity sets. We start
with B = {∅}, and then, for each possible pair of connectivity sets Hi,j , Hi′,j′ we increase B
as follows:
(i) add N+(Hi,j \Hi′,j′) ∩Hi′,j′ to B.
(ii) add N+(Hi,j ∩Hi′,j′) ∩ (Hi′,j′ \Hi,j) to B.
(iii) add N+(Hi′,j′ \Hi,j) ∩Hi,j to B.
(iv) add N+(Hi′,j′ ∩Hi,j) ∩ (Hi,j \Hi′,j′) to B.
For a given pair of connectivity sets, in each of the items i), ii), iii) and iv) the number of
added vertices to B is at most κ. For instance,let y1, . . . , yl be the vertices added by item
i), where each ys ∈ N+(Hi,j \Hi′,j′) ∩Hi′,j′ . By definition, there exist vertices x1, . . . , xl
of Hi,j \Hi′,j′ such that xsys are arcs of G for s = 1, . . . , l. Notice that while the ys’s are
distinct, the xs’s are not forced to be so. For any s ∈ {1, . . . , l}, there exists a path Ps in
Hi′,j′ from ys to vj′ , and such a path does not intersect Hi,j \Hi′,j′ . In the same way, by
finding a path Qs from vi to xs for every s ∈ {1, . . . , l}, we form l distinct paths QsPs from
vi to vj′ , implying l ≤ κ, the K-width of G. So, as there are dfv2 different connectivity sets,
at the end of the process B contains at most κ× dfv4 vertices. Figure 2 shows examples of
vertices to be added in B regarding the interaction of two different connectivity sets.

vi vj

vi’ vj’

vi vj

vi’

a) b) c)

vi

vi’

Figure 2 a) two connectivity sets with no intersection. b) an intersection with two vertices
belonging to both connectivity sets. c) two connectivity sets Hi,j with i = j. Vertices to be added
in B are marked in blue.

Next we establish our last branching rule.

S. Bessy, M. Bougeret, A.D. A. Carneiro, F. Protti, and U. S. Souza 2:13

I Branching 3 (On the connectivity sets). We branch by partitioning B into three parts: B1,
the set of vertices that will not be removed (ie. they become forbidden); B2, the set of vertices
that will be removed; and B3, the set of vertices that will become sinks. Since |B| ≤ κ× dfv4,
we branch at most 3κ.dfv4 times.

At this point, without loss of generality, one can assume that none of the above branching
and reductions rules are applicable. Hence, the analysis boils down to the case where
F ∪B ⊆ X, meaning that all the vertices of F ∪B are forbidden to be deleted or become
sinks, and G is strongly connected.

I Observation 5 (The consequences of Branching 3). Let G be a graph for which no Reduction
Rules 1 and 2 or Branching Rules 1 to 3 can be applied. Let Hi,j and Hi′,j′ be two different
connectivity arc sets in G. If there is an arc from Hi,j \Hi′,j′ to Hi′,j′ \Hi,j or Hi,j ∩Hi′,j′

to Hi′,j′ \Hi,j in G[Hi,j ∪Hi′,j′], then the head vertex of such an arc is a forbidden vertex.

We now aim to show that, for any vertex v∗ such that v∗ can be turned into a sink, that
is, N+(v∗) ∩X = ∅ and d+(v∗) ≤ k, the deletion of N+(v∗) is sufficient for G to become
knot-free.

I Lemma 11. Let (G,F,X, k) be an instance of (dfv, κ)-Disjoint-KFVD such that G is
strongly connected and none of the branching and reduction rules can be applied. If there is a
vertex v∗ with no forbidden out-neighbors, then G[V \N+(v∗)] is knot-free.

Proof. Let (G,F, k,X) and v∗ as stated. Denote by G′ the resulting graph, i.e, G′ =
G[V \ N+(v∗)]. For contradiction, assume that G′ contains a knot K. As G is strongly
connected, K was not a knot in G, implying that there exists an arc xy of G such that
x ∈ V (K) and y ∈ N+(v∗). Notice that v∗ /∈ F since vertices from F cannot become sinks
and y /∈ X, since y has to be deleted in order to v∗ to become a sink. Let us now define a
connectivity set containing both y and v∗. Let s be any source of the DAG G[V \ F] such
that there is a sv∗ path in G[V \ F], and let z be any sink of G[V \ F] such that there
is a yz path in G[V \ F]. As G is strongly connected, there exist arcs vis and zvj where
{vi, vj} ⊆ F and we get that {v∗, y} ⊆ Hi,j . Notice that i = j is possible. Similarly, as
G[V (K)] is strongly connected, it contains a cycle C ′ containing x and thus there exists
a connectivity set Hk,l containing a path P from vk to vl which is a subpath of G[V (K)]
containing x, and with {vk, vl} ⊆ V (K). Notice first that v∗, y /∈ F . In addition, v∗ is not
a vertex of Hk,l, otherwise there would exist a path P ′ from vk to v∗ containing no vertex
of F \ {vk}, which is not possible. Indeed, either V (P ′) ∩ N+(v∗) = ∅ and we would get
that K is not a knot, or V (P ′) ∩N+(v∗) 6= ∅, implying that there is a cycle with no vertex
of F . Thus, as y was not a forbidden vertex, it means that y /∈ Hk,l otherwise the arc v∗y
would go from Hi,j \Hk,l to Hi,j ∩Hk,l and y should be forbidden by Branching 3 item i).
Then we have y ∈ Hi,j \Hk,l. Similarly, we have x /∈ Hi,j ∩Hk,l, otherwise by item ii) of
Branching 3, vertex y would be forbidden. Finally x ∈ Hk,l \Hi,j and y ∈ Hi,j \Hk,l, since
(Hi,j \Hk,l) ⊆ Hi,j , and by item iii) of Branching 3, vertex y would again be a forbidden
vertex, a contradiction. J

In conclusion, by Lemma 11, we can find in polynomial time the optimum solution for G:
we choose a vertex v∗ with minimum out-degree.

I Theorem 12. Knot-free Vertex Deletion can be solved in 2O(κdfv5) × nO(1).

Proof. Let us now compute the running time of the overall algorithm. First notice that
applying Branchings 1 and 2 results in 3dfv × 22dfv2 branches. Branching 3 can be done

IPEC 2019

2:14 Width Parameterizations for Knot-Free Vertex Deletion on Digraphs

in time 3κ.dfv4 , but may re-create several SCC’s, forcing us to apply again Branching 2
and reduction rules again, but decreasing k. This implies that the total running time is
3dfv × (22dfv23κ.dfv4)k × nO(1), thus the result holds. J

5.2 Combining DFVS-number and length of a longest directed path
In this subsection we investigate the length of a longest path and dfv(G) as aggregate
parameters.

I Lemma 13. (dfv, p)-Disjoint-KFVD on super nice instances can be solved in
2O(dfv3)pO(dfv) × nO(1).

Proof. Let (G,F,X, k) be a super nice instance. Recall that the directed feedback vertex
set F is a set of forbidden vertices (F ⊆ X) and G is strongly connected. The proof is by
induction on |F |. If |F | = 1, then, for any vertex v of V (G) \ F that can be turned into a
sink, N+(v) will be a solution set for G. Therefore, the optimum solution can be found in
polynomial time. Assume now that |F | ≥ 2 and denote F by {v1, . . . , vdfv}. As G is strongly
connected, there exists a path P1 of length at most p from v1 to v2 and a path P2 of length
at most p from v2 to v1. Denote by C the digraph G[V (P1)∪V (P2)]; it is strongly connected,
contains v1 and v2 and at most 2p vertices. Since the number of vertices in C is bounded,
we may branch 2p+ 1 times by trying to guess a vertex that will be deleted in C. Each time
a vertex of C will be guessed as deleted, the parameter k will decrease by one. So, k will
decrease in all branches, except in the one where we guess that no vertex is deleted, and then
where all the vertices of C are forbidden. In this case, C is a strongly connected component
whose vertices are all forbidden and containing at least two vertices of F . So, we contract
C to obtain a new instance G′. Formally, we remove V (C) from G, add a new vertex vC ,
and for all vertices of G \ C having at least one in-neighbor (resp. out-neighbor) in C, we
add an arc from vC (resp. to vC) to this vertex. Let F ′ be the set {vC} ∪ F \ V (C) and
notice that F ′ is a directed feedback vertex set of G′ and that |F ′| < |F |. Similarly, let X ′
be the set (X \ V (C)) ∪ {vC}. We claim that both instances (G,F, k,X) and (G′, F ′, k,X ′)
are equivalent. Indeed, it suffices to notice that as V (C) contains only forbidden vertices in
G and that vC is forbidden in G′, then any solution to the KFVD problem for G is a solution
of G′, and conversely. Then, we apply Branchings 1 and 2 to obtain a super nice instance
equivalent to (G′, F ′, k,X ′), and we can apply the induction hypothesis.
So at each branching, either the parameter k decreases by at least one or the size of F
decreases by at least one. As both values are bounded above by dfv, we branch consecutively
at most 2dfv times. And since Branching rules 1 and 2 create at most 3dfv × 22dfv2

branches, and branching on cycle C creates 2p+ 1 branches, the total number of branches is
(3dfv × 22dfv2 × (2p+ 1))2dfv = 2O(dfv3)pO(dfv), and we get the desired running time. J

Given that we can obtain a super nice instance in 2O(dfv3)×nO(1), it holds that Knot-free
Vertex Deletion can be solved in time 2O(dfv3)pO(dfv) × nO(1).

References
1 Saeed Akhoondian Amiri, Lukasz Kaiser, Stephan Kreutzer, Roman Rabinovich, and Sebastian

Siebertz. Graph searching games and width measures for directed graphs. In 32nd International
Symposium on Theoretical Aspects of Computer Science (STACS 2015). Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, 2015.

2 János Barát. Directed path-width and monotonicity in digraph searching. Graphs and
Combinatorics, 22(2):161–172, 2006.

S. Bessy, M. Bougeret, A.D. A. Carneiro, F. Protti, and U. S. Souza 2:15

3 Valmir C. Barbosa. The Combinatorics of Resource Sharing. In Models for Parallel and
Distributed Computation, pages 27–52. Springer, 2002.

4 Valmir C. Barbosa and Mario R. F. Benevides. A graph-theoretic characterization of AND-OR
deadlocks. Technical Report COPPE-ES-472/98, Federal University of Rio de Janeiro, Rio de
Janeiro, Brazil, 1998.

5 Valmir C. Barbosa, Alan D. A. Carneiro, Fábio Protti, and Uéverton S. Souza. Deadlock
Models in Distributed Computation: Foundations, Design, and Computational Complexity.
In Proceedings of the 31st ACM/SIGAPP Symposium on Applied Computing, pages 538–541,
2016.

6 Dietmar Berwanger, Anuj Dawar, Paul Hunter, Stephan Kreutzer, and Jan Obdržálek. The
dag-width of directed graphs. Journal of Combinatorial Theory, Series B, 102(4):900–923,
2012.

7 Dietmar Berwanger and Erich Grädel. Entanglement – A Measure for the Complexity of
Directed Graphs with Applications to Logic and Games. In Franz Baader and Andrei Voronkov,
editors, Logic for Programming, Artificial Intelligence, and Reasoning, pages 209–223, Berlin,
Heidelberg, 2005. Springer Berlin Heidelberg.

8 Hans L Bodlaender, Pål Grønås Drange, Markus S. Dregi, Fedor V. Fomin, Daniel Lokshtanov,
and Michał Pilipczuk. A ckn 5-Approximation Algorithm for Treewidth. SIAM Journal on
Computing, 45(2):317–378, 2016.

9 John A. Bondy and Uppaluri S. R. Murty. Graph theory with applications, volume 290.
Macmilan, 1976.

10 Alan D. A. Carneiro, Fábio Protti, and Uéverton S. Souza. Deletion Graph Problems Based
on Deadlock Resolution. In The 23rd International Computing and Combinatorics Conference,
COCOON 2017, Hong Kong, China, August 3-5, 2017. Lecture Notes in Computer Science,
volume 10392, pages 75–86. Springer, 2017.

11 Alan D. A. Carneiro, Fábio Protti, and Uéverton S. Souza. Fine-Grained Parameterized
Complexity Analysis of Knot-Free Vertex Deletion – A Deadlock Resolution Graph Problem. In
The 24th International Computing and Combinatorics Conference, COCOON 2018, Qingdao,
China , July 2-4, 2018. Lecture Notes in Computer Science, volume 10976, pages 84–95.
Springer, 2018.

12 Alan D. A. Carneiro, Fábio Protti, and Uéverton S Souza. Deadlock resolution in wait-for
graphs by vertex/arc deletion. Journal of Combinatorial Optimization, 37(2):546–562, 2019.

13 K Mani Chandy and Leslie Lamport. Distributed snapshots: determining global states of
distributed systems. ACM Transactions on Computer Systems, 3:63–75, 1985.

14 Jianer Chen, Yang Liu, Songjian Lu, Barry O’sullivan, and Igor Razgon. A fixed-parameter
algorithm for the directed feedback vertex set problem. Journal of the ACM (JACM), 55(5):21,
2008.

15 Bruno Courcelle and Joost Engelfriet. Graph structure and monadic second-order logic: a
language-theoretic approach, volume 138. Cambridge University Press, 2012.

16 Bruno Courcelle, Johann A Makowsky, and Udi Rotics. Linear time solvable optimization
problems on graphs of bounded clique-width. Theory of Computing Systems, 33(2):125–150,
2000.

17 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.

18 Robert Ganian, Petr Hliněnỳ, Joachim Kneis, Alexander Langer, Jan Obdržálek, and Peter
Rossmanith. Digraph width measures in parameterized algorithmics. Discrete applied math-
ematics, 168:88–107, 2014.

19 Robert Ganian, Petr Hliněnỳ, Joachim Kneis, Daniel Meister, Jan Obdržálek, Peter Rossmanith,
and Somnath Sikdar. Are there any good digraph width measures? In International Symposium
on Parameterized and Exact Computation, pages 135–146. Springer, 2010.

20 Hermann Gruber. Digraph Complexity Measures and Applications in Formal Language Theory.
Discrete Mathematics & Theoretical Computer Science, 14(2):189–204, 2012.

IPEC 2019

2:16 Width Parameterizations for Knot-Free Vertex Deletion on Digraphs

21 Richard C Holt. Some deadlock properties of computer systems. ACM Computing Surveys
(CSUR), 4(3):179–196, 1972.

22 Paul Hunter and Stephan Kreutzer. Digraph measures: Kelly decompositions, games, and
orderings. Theoretical Computer Science, 399(3):206–219, 2008. Graph Searching.

23 Thor Johnson, Neil Robertson, P.D. Seymour, and Robin Thomas. Directed Tree-Width.
Journal of Combinatorial Theory, Series B, 82(1):138–154, 2001.

24 RichardM. Karp. Reducibility among Combinatorial Problems. In RaymondE. Miller, JamesW.
Thatcher, and JeanD. Bohlinger, editors, Complexity of Computer Computations, The IBM
Research Symposia Series, pages 85–103. Springer US, 1972.

25 Mateus de O. Oliveira. Subgraphs satisfying MSO properties on z-topologically orderable
digraphs. In International Symposium on Parameterized and Exact Computation, pages
123–136. Springer, 2013.

26 Mateus de O. Oliveira. An algorithmic metatheorem for directed treewidth. Discrete Applied
Mathematics, 204:49–76, 2016.

27 Sang-Il Oum. Approximating Rank-width and Clique-width Quickly. ACM Transactions on
Algorithms, 5(1):10:1–10:20, 2008.

28 Roman Rabinovich and Lehr-und Forschungsgebiet. Complexity measures of directed graphs.
PhD thesis, RWTH Aachen University, 2008.

29 Mohammad Ali Safari. D-Width: A More Natural Measure for Directed Tree Width. In
Joanna Jȩdrzejowicz and Andrzej Szepietowski, editors, Mathematical Foundations of Computer
Science 2005, pages 745–756, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

	Introduction
	Preliminaries
	W[1]-hardness and directed width measures
	The treewidth of the underlying undirected graph as parameter
	The size of a minimum directed feedback vertex set as parameter
	Combining DFVS-number and K-width
	Combining DFVS-number and length of a longest directed path

