57 research outputs found

    Tree decompositions with small cost

    Get PDF
    The f-cost of a tree decomposition ({Xi | i e I}, T = (I;F)) for a function f : N -> R+ is defined as EieI f(|Xi|). This measure associates with the running time or memory use of some algorithms that use the tree decomposition. In this paper we investigate the problem to find tree decompositions of minimum f-cost. A function f : N -> R+ is fast, if for every i e N: f(i+1) => 2*f(i). We show that for fast functions f, every graph G has a tree decomposition of minimum f-cost that corresponds to a minimal triangulation of G; if f is not fast, this does not hold. We give polynomial time algorithms for the problem, assuming f is a fast function, for graphs that has a polynomial number of minimal separators, for graphs of treewidth at most two, and for cographs, and show that the problem is NP-hard for bipartite graphs and for cobipartite graphs. We also discuss results for a weighted variant of the problem derived of an application from probabilistic networks

    Potential Maximal Clique Algorithms for Perfect Phylogeny Problems

    Full text link
    Kloks, Kratsch, and Spinrad showed how treewidth and minimum-fill, NP-hard combinatorial optimization problems related to minimal triangulations, are broken into subproblems by block subgraphs defined by minimal separators. These ideas were expanded on by Bouchitt\'e and Todinca, who used potential maximal cliques to solve these problems using a dynamic programming approach in time polynomial in the number of minimal separators of a graph. It is known that solutions to the perfect phylogeny problem, maximum compatibility problem, and unique perfect phylogeny problem are characterized by minimal triangulations of the partition intersection graph. In this paper, we show that techniques similar to those proposed by Bouchitt\'e and Todinca can be used to solve the perfect phylogeny problem with missing data, the two- state maximum compatibility problem with missing data, and the unique perfect phylogeny problem with missing data in time polynomial in the number of minimal separators of the partition intersection graph

    Realizability of metamaterials with prescribed electric permittivity and magnetic permeability tensors

    Full text link
    We show that any pair of real symmetric tensors \BGve and \BGm can be realized as the effective electric permittivity and effective magnetic permeability of a metamaterial at a given fixed frequency. The construction starts with two extremely low loss metamaterials, with arbitrarily small microstructure, whose existence is ensured by the work of Bouchitt{\'e} and Bourel and Bouchitt\'e and Schweizer, one having at the given frequency a permittivity tensor with exactly one negative eigenvalue, and a positive permeability tensor, and the other having a positive permittivity tensor, and a permeability tensor having exactly one negative eigenvalue. To achieve the desired effective properties these materials are laminated together in a hierarchical multiple rank laminate structure, with widely separated length scales, and varying directions of lamination, but with the largest length scale still much shorter than the wavelengths and attenuation lengths in the macroscopic effective medium.Comment: 12 pages, no figure

    A note on permeability for a network of thin channels

    Get PDF
    We study a viscous flow through a periodic network of thin channels with small period and small thickness . We consider two cases limε --> 0 (limδ --> 0) and limδ --> 0 (limε --> 0). In both cases the limit (homogenized) problem is the Darcy law with the same permeability tensor

    A Numerical Minimization Scheme for the Complex Helmholtz Equation

    Full text link
    We use the work of Milton, Seppecher, and Bouchitt\'{e} on variational principles for waves in lossy media to formulate a finite element method for solving the complex Helmholtz equation that is based entirely on minimization. In particular, this method results in a finite element matrix that is symmetric positive-definite and therefore simple iterative descent methods and preconditioning can be used to solve the resulting system of equations. We also derive an error bound for the method and illustrate the method with numerical experiments.Comment: 18 pages, 4 figure
    corecore