57 research outputs found
Tree decompositions with small cost
The f-cost of a tree decomposition ({Xi | i e I}, T = (I;F))
for a function f : N -> R+ is defined as EieI f(|Xi|). This measure
associates with the running time or memory use of some algorithms
that use the tree decomposition. In this paper we investigate the
problem to find tree decompositions of minimum f-cost.
A function f : N -> R+ is fast, if for every i e N: f(i+1) => 2*f(i).
We show that for fast functions f, every graph G has a tree decomposition
of minimum f-cost that corresponds to a minimal triangulation
of G; if f is not fast, this does not hold. We give polynomial time
algorithms for the problem, assuming f is a fast function, for graphs
that has a polynomial number of minimal separators, for graphs of
treewidth at most two, and for cographs, and show that the problem
is NP-hard for bipartite graphs and for cobipartite graphs.
We also discuss results for a weighted variant of the problem derived
of an application from probabilistic networks
Potential Maximal Clique Algorithms for Perfect Phylogeny Problems
Kloks, Kratsch, and Spinrad showed how treewidth and minimum-fill, NP-hard
combinatorial optimization problems related to minimal triangulations, are
broken into subproblems by block subgraphs defined by minimal separators. These
ideas were expanded on by Bouchitt\'e and Todinca, who used potential maximal
cliques to solve these problems using a dynamic programming approach in time
polynomial in the number of minimal separators of a graph. It is known that
solutions to the perfect phylogeny problem, maximum compatibility problem, and
unique perfect phylogeny problem are characterized by minimal triangulations of
the partition intersection graph. In this paper, we show that techniques
similar to those proposed by Bouchitt\'e and Todinca can be used to solve the
perfect phylogeny problem with missing data, the two- state maximum
compatibility problem with missing data, and the unique perfect phylogeny
problem with missing data in time polynomial in the number of minimal
separators of the partition intersection graph
Realizability of metamaterials with prescribed electric permittivity and magnetic permeability tensors
We show that any pair of real symmetric tensors \BGve and \BGm can be
realized as the effective electric permittivity and effective magnetic
permeability of a metamaterial at a given fixed frequency. The construction
starts with two extremely low loss metamaterials, with arbitrarily small
microstructure, whose existence is ensured by the work of Bouchitt{\'e} and
Bourel and Bouchitt\'e and Schweizer, one having at the given frequency a
permittivity tensor with exactly one negative eigenvalue, and a positive
permeability tensor, and the other having a positive permittivity tensor, and a
permeability tensor having exactly one negative eigenvalue. To achieve the
desired effective properties these materials are laminated together in a
hierarchical multiple rank laminate structure, with widely separated length
scales, and varying directions of lamination, but with the largest length scale
still much shorter than the wavelengths and attenuation lengths in the
macroscopic effective medium.Comment: 12 pages, no figure
A note on permeability for a network of thin channels
We study a viscous flow through a periodic network of thin channels with small period and small thickness . We consider two cases limε --> 0 (limδ --> 0) and limδ --> 0 (limε --> 0). In both cases the limit (homogenized) problem is the Darcy law with the same permeability tensor
A Numerical Minimization Scheme for the Complex Helmholtz Equation
We use the work of Milton, Seppecher, and Bouchitt\'{e} on variational
principles for waves in lossy media to formulate a finite element method for
solving the complex Helmholtz equation that is based entirely on minimization.
In particular, this method results in a finite element matrix that is symmetric
positive-definite and therefore simple iterative descent methods and
preconditioning can be used to solve the resulting system of equations. We also
derive an error bound for the method and illustrate the method with numerical
experiments.Comment: 18 pages, 4 figure
- …