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Abstract

The f -cost of a tree decomposition ({Xi | i ∈ I}, T = (I, F ))
for a function f : N → R+ is defined as

∑
i∈I f(|Xi|). This measure

associates with the running time or memory use of some algorithms
that use the tree decomposition. In this paper we investigate the
problem to find tree decompositions of minimum f -cost.

A function f : N→ R+ is fast, if for every i ∈ N: f(i+1) ≥ 2·f(i).
We show that for fast functions f , every graph G has a tree decompo-
sition of minimum f -cost that corresponds to a minimal triangulation
of G; if f is not fast, this does not hold. We give polynomial time
algorithms for the problem, assuming f is a fast function, for graphs
that has a polynomial number of minimal separators, for graphs of
treewidth at most two, and for cographs, and show that the problem
is NP-hard for bipartite graphs and for cobipartite graphs.

We also discuss results for a weighted variant of the problem de-
rived of an application from probabilistic networks.

1 Introduction

It is well known that many problems that are intractable on general graphs
become linear or polynomial time solvable on graphs of bounded treewidth.
These algorithms often have the following form: first a tree decomposition of
small treewidth is made, and then a dynamic programming algorithm is used,
computing a table for each node of the tree. The time to process one node
of the tree is exponential in the size of the associated set of vertices of the
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graph; thus, when the maximum size of such a set is bounded by a constant
(i.e., the width of the tree decomposition is bounded by a constant), then the
algorithm runs in linear time. However, two different tree decompositions of
the same graph with the same width may still give different running times,
e.g., when one has many large vertex sets associated to nodes, while the other
has only few large vertex sets associated to nodes.

In several applications, the same tree decomposition will be used for sev-
eral successive runs of an algorithm, e.g., with different data. An important
example of such an application is the probabilistic inference problem
on probabilistic networks. (This application will be briefly discussed in Sec-
tion 8.) Hence, in many cases it makes sense to do more work on finding a
good tree decomposition, and to use a more refined measure on what is a
‘good’ tree decomposition. Suppose the time to process a node of the tree
decomposition whose associated set has size k is f(k). Then, processing a
tree decomposition of the form ({Xi | i ∈ I}, T = (I, F )) costs

∑
i∈I f(|Xi|)

time. (For precise definitions, see Section 2.) We call this measure the f-
cost of the tree decomposition; the treecost of a graph G with respect to
f is the minimum f -cost of a tree decomposition of G. In other cases, the
f -cost of the tree decomposition can represent the amount of space needed
for the algorithm, in particular, the total size of all tables a specific dynamic
programming algorithm uses with the tree decomposition. In this paper, we
investigate the problem of finding tree decompositions of minimum f -cost.

It appears that it is important whether the function f satisfies a certain
condition which we call fast: a function f : N → R+ is fast, if for every
k, f(k + 1) ≥ 2 · f(k). Most applications of treewidth in our framework
will have functions that are fast (in particular, many of the classical algo-
rithms using tree decompositions for well known graph problems have fast
cost functions.) To a tree decomposition we can associate a triangulation
(chordal supergraph) of input graph G in a natural way. Now, every graph
has a tree decomposition of minimum f -cost that can be associated with a
minimal triangulation, if and only if f is fast. This will be shown in Sec-
tion 3. This result will be used in later sections to show that the problem
of finding minimum f -cost tree decompositions can be solved in polynomial
time for graphs that have a polynomial number of separators (Section 4), and
in linear time for cographs (Section 5), and for graphs of treewidth at most
two (Section 6); assuming in each case that f is fast and polynomial time
computable. In Section 7, we discuss a conjecture on the relation between
triangulations of minimum f -cost and minimum treewidth, and show that
for a fixed k, one can find a triangulation of minimum f -cost among those
of treewidth at most k in polynomial time. A variant of the problems for
weighted graphs with an application to probabilistic networks is discussed in
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Section 8. In Section 9, we show the unsurprising but unfortunate result that
for each fast f , the Treecostf problem is NP-hard for cobipartite graphs
and for bipartite graphs. Also, in these cases there is no constant factor
approximation algorithm, unless P = NP . Some final remarks are made in
Section 10.

2 Preliminaries

We use the following notations: G = (V,E) is an undirected and finite graph
with vertex set V and the edge set E, assumed to be without self-loops or
parallel edges. Unless otherwise specified, n denotes the number of vertices
and m the number of edges of G. The (open) neighborhood of a vertex v in a
graph G is NG(v) = {u ∈ V : {u, v} ∈ E} and the closed neighborhood of v is
NG[v] = NG(v)∪ {v}. For a vertex set S ⊆ V we denote NG[S] =

⋃
v∈S N [v]

and N(S) = N [S] \ S. If G is clear from the context, we write N(v), N [v],
etc. dG(v) := |NG(v)| is the degree of v in G. G − v is the graph, obtained
by removing v and its incident edges from G.

For a set S ⊆ V of vertices of a graph G = (V,E) we denote by G[S]
the subgraph of G induced by S. A set W ⊆ V of vertices is a clique in
graph G = (V,E) if G[W ] is a complete graph, i.e. every pair of vertices
from W induces an edge of G. A set W ⊆ V of vertices is a maximal clique
in G = (V,E), if W is a clique in G and W is not a proper subset of another
clique in G.

A chord of a cycle C is an edge not in C that has both endpoints in C. A
chordless cycle in G is a cycle of length more than three that has no chord.
A graph G is chordal if it does not contain a chordless cycle.

A triangulation of a graph G is a graph H on the same vertex set as G
that contains all edges of G and is chordal. A minimal triangulation of G is
a triangulation H such that no proper subgraph of H is a triangulation of G.

Definition A tree decomposition of a graph G = (V,E) is a pair ({Xi | i ∈
I}, T = (I, F )), with {Xi | i ∈ I} a family of subsets of V and T a tree, such
that

•
⋃
i∈I Xi = V .

• For all {v, w} ∈ E, there is an i ∈ I with v, w ∈ Xi.

• For all i0, i1, i2 ∈ I: if i1 is on the path from i0 to i2 in T , then
Xi0 ∩Xi2 ⊆ Xi1 .
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The width of tree decomposition ({Xi | i ∈ I}, T = (I, F )) is maxi∈I |Xi|−1.
The treewidth of a graph G is the minimum width of a tree decomposition
of G.

The following well known result is due to Gavril [10].

Theorem 1 ([10]) Graph G is chordal if and only there is a clique tree of
G, i.e. tree decomposition ({Xi | i ∈ I}, T = (I, F )) of G such that for every
node i of T there is a maximal clique W of G such that Xi = W .

Definition For a function f : N→ R+, the f-cost of a tree decomposition
({Xi | i ∈ I}, T = (I, F )) is

∑
i∈I f(|Xi|). The treecost with respect to f of a

graph G is the minimum f -cost of a tree decomposition of G, and is denoted
tcf(G).

Definition The f-cost of a chordal graph G is

costf(G) =
∑

W⊆V ;W is a maximal clique

f(|W |)

We identify the following computational problem. Given a function f :
N→ R+, the Treecostf problem is the problem, that given a graph G =
(V,E) and an integer K, decides whether tcf(G) ≤ K.

Lemma 2 The treecost of a graph G with respect to f equals the minimum
f-cost of a chordal graph H that contains G as a subgraph.

Proof. The proof of this lemma follows from a direct implication of The-
orem 1. If we have a tree decomposition ({Xi | i ∈ I}, T = (I, F )), we can
build a chordal graph H, by taking EH = {{v, w} | ∃i ∈ I : v, w ∈ Xi}. The
f -cost of H is at most the f -cost of the tree decomposition, as each set Xi,
i ∈ I is a clique in H, and H is chordal.

If we have a chordal graph H, then one can build a tree decomposition
such that each set Xi is a maximal clique in H and vice versa (see [2, Section
6].) ut

An interesting and important question is whether the treecost of a chordal
graph equals its f -cost. We will see in Section 3 that this depends on the
function f .

Definition A function f : N→ R+ is fast, if for all i ∈ N, f(i+1) ≥ 2·f(i).

An example of a fast function is the function f(i) = 2i.
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Definition A tree decomposition ({Xi | i ∈ I}, T = (I, F )) of a graph
G = (V,E) is minimal, if there is no {i, j} ∈ F with Xi ⊆ Xj.

It is well known that there is always a minimal tree decomposition of
minimum treewidth. Such a minimal tree decomposition can be obtained by
taking an arbitrary tree decomposition of minimum width, and while there
is an edge {i, j} ∈ F with Xi ⊆ Xj, contracting this edge, taking for the new
node i′, Xi′ = Xi ∪ Xj = Xj. The same construction can also be obtained
for obtaining a minimal tree decomposition of minimum f -cost.

Lemma 3 Let f be a function f : N→ R+.
(i) Let ({Xi | i ∈ I}, T = (I, F )) be a tree decomposition of a graph

G = (V,E) of minimum f-cost. Then this tree decomposition is minimal.
(ii) Every graph G has a minimal tree decomposition with f-cost equal to the
treecost of G with respect to f .

Proof. (i) If we have a tree decomposition ({Xi | i ∈ I}, T = (I, F ))
of G that is not minimal, then there is an edge {i, j} ∈ F with Xi ⊆ Xj.
Contracting this edge gives another tree decomposition of G with smaller
f -cost.

(ii) As discussed above. ut

Lemma 4 Let f be a function f : N→ R+. Let G be a graph with n vertices
and with treewidth k. Then tcf(G) ≤ (n− k) · f(k + 1).

Proof. Take a minimal tree decomposition ({Xi | i ∈ I}, T = (I, F )) of G
of width k. This tree decomposition will have |I| ≤ n− k, and each node of
the tree decomposition has at most k + 1 vertices. ut

The following well known lemma (see [4] for its proof) is used in some of
our proofs.

Lemma 5 Let ({Xi | i ∈ I}, T = (I, F )) be a tree decomposition of G =
(V,E).
(i) Suppose W ⊆ V forms a clique in G. Then there is an i ∈ I with W ⊆ Xi.
(ii) Suppose there are sets W1, W2 ⊆ V , such that for all w1 ∈W1, w2 ∈ W2,
{w1, ww} ∈ E. Then there is an i ∈ I with W1 ⊆ Xi or W2 ⊆ Xi.

An alternative way of stating Lemma 5(ii) is

Lemma 6 Let H be a chordal supergraph of G = (V,E), and suppose there
are sets W1, W2 ⊆ V , such that for all w1 ∈ W1, w2 ∈ W2, {w1, ww} ∈ E.
Then W1 forms a clique in H or W2 forms a clique in H.
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3 Minimal triangulations and treecost

In this section, we investigate for which chordal graphs and which functions
f , the treecost equals the f -cost. Using the obtained results, we will see that
for every fast function f , there always exists a minimal triangulation with
optimal f -cost.

Lemma 7 Let f : N → R+ be a function that is not fast. Then there is a
chordal graph G, such that the f-cost of G is larger than the treecost of G
with respect to f .

Proof. Suppose f(i+ 1) < 2 · f(i). Let G be the graph, obtained by taking
a clique with i+ 1 vertices and remove one edge e. Then G has f -cost 2f(i),
but the triangulation that is formed by adding the edge e has f -cost f(i+1).

ut

The next two lemmas follow by observing which are the maximal cliques
in the graphs G and G− v.

Lemma 8 Let f : N→ R+ be a function, and G be a chordal graph. Suppose
v is a simplicial vertex in G, and suppose NG(v) is a maximal clique in the
graph G− v. Then costf(G) = costf(G− v) + f(dG(v) + 1)− f(dG(v)).

Lemma 9 Let f : N→ R+ be a function, and G be a chordal graph. Suppose
v is a simplicial vertex in G, and suppose NG(v) is not a maximal clique in
the graph G− v. Then costf(G) = costf(G− v) + f(dG(v) + 1).

Lemma 10 Suppose G and H are chordal graphs and G is a subgraph of
H. Let v be a simplicial vertex in G. Let H ′ be the graph obtained from
H by removing all edges incident to v that do not belong to G, i.e., EH′ =
EH − {{v, w} | w 6∈ NG(v)}. Then H ′ is chordal.

Proof. Consider a cycle in H ′ of length at least four. If the cycle contains
v, then it has a chord between the vertices before and after v on the cycle,
as these are neighbors of v in H ′ hence in G, and adjacent as v is simplicial
v in G. If the cycle does not contain v, then it is a cycle in H and hence has
a chord in H, which also is a chord in H ′. ut

Lemma 11 Let G = (V,EG) and H = (V,EH) be chordal graphs, and f :
N→ R+ be a fast function. Suppose G is a subgraph of H. Then costf(G) ≤
costf(H).
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Proof. We use induction to |V |. Clearly, if |V | = 1, then G = H and the
result holds.

Suppose the result holds for graphs with up to n − 1 vertices, and let
G and H be chordal graphs with n vertices, with the same vertex set and
EG ⊆ EH .

Take a vertex v that is simplicial in G. Let H ′ be the graph obtained
from H by removing all edges, incident to v that do not belong to G, i.e.,
EH′ = EH −{{v, w} | w 6∈ NG(v)}. By Lemma 10 H ′ is chordal. Vertex v is
a simplicial vertex in H ′ and H ′ − v is chordal.

First, we show that costf(G) ≤ costf(H
′).

Claim 12 costf(G) ≤ costf(H
′).

Proof. v is also simplicial in H ′, and H ′ − v is a chordal graph. Thus, by
induction, costf(G− v) ≤ costf(H

′ − v),
Write Z = NG(v) = NH′(v), and d = dG(v) = dH′(v).
Note that if Z is not a maximal clique in G − v, then Z is a subset of

some larger clique Z ′ in G− v. But, Z ′ also must be a clique in H ′ − v, and
hence in this case Z is not a maximal clique in H ′ − v. It follows that Z is
a maximal clique in G− v or Z is not a maximal clique in H ′ − v.

Using Lemmas 8 and 9, we can observe the following. If Z is a maximal
clique in G−v, then costf(G) = costf(G−v)+f(d+1)−f(d) and costf(H

′) ≥
costf(H

′ − v) + f(d + 1) − f(d), hence costf(G) ≤ costf(H
′). If Z is not a

maximal clique in H ′ − v, then costf(H
′) = costf(H

′ − v) + f(d + 1), and
costf(G) ≤ costf(G− v) + f(d+ 1), so again costf(G) ≤ costf(H

′). ut

Claim 13 costf(H
′) ≤ costf(H).

Proof. When dH(v) = dH′(v) the result holds trivially. Suppose that
dH(v) > dH′(v). So H is obtained from H ′ by adding one or more edges to
vertex v. There is exactly one maximal clique in H ′ that contains v, namely
W0 = NH′(v)∪{v}. Suppose W0 ⊆ W1, with W1 a maximal clique in H. We
now have the following cases for sets W that form a maximal clique in H ′.
Each maximal clique in H ′ will be associated with a maximal clique in H.

• W = W0. Associate W0 with W1.

• v 6∈W , and W 6⊆W1. Then, W is a maximal clique in H, or W ∪ {v}
is a maximal clique in H, as H and H ′ differ only by some edges that
have v as endpoint. Associate W with this maximal clique (i.e., W or
W ∪ {v}.)
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• v 6∈W and W ⊆ W1. As W1 is a clique in H, the set W1−{v} forms a
clique in H and in H ′, so we must have W = W1 − {v}. Associate W
with W1.

Every maximal clique W in H except for W1 has exactly one maximal clique
in H ′ associated with it, namely either W or W −{v}; we note that f(|W −
{v}|) < f(|W |). W1 can have two maximal cliques in H ′ associated with it,
namely W0 and W1−{v}. There are two cases: if W0 = W1, then W1−{v} is
not a maximal clique in H ′, and it follows that costf(H

′) ≤ costf(H); if W0 is
a proper subset of W1, then W1 has exactly two maximal cliques associated
with it, but both are of smaller size; we can use here that f is a fast function:
f(|W0|) + f(|W1 − {v}|) ≤ 2f(|W1| − 1) ≤ f(W1), and hence we have again
costf(H

′) ≤ costf(H). ut

Combining these two claims, we have costf(G) ≤ costf(H), which finishes
the inductive proof of this lemma. ut

Theorem 14 Let f : N → R+ be a fast function. Every graph G has a
minimal triangulation H, such that costf(H) = tcf(G).

Proof. Suppose H ′ is a triangulation of G with costf(H
′) = tcf(G). H ′

contains a minimal triangulation H of G. Trivially, we have costf(H) ≥
tcf(G). By the previous lemma, we have costf(H) ≤ costf(H

′). ut

Corollary 15 Let G be a chordal graph, and let f be a fast function. Then
costf(G) = tcf(G).

Proof. The only minimal triangulation of G is G itself. ut

4 Separators

In this section we obtain an important algorithmic consequence of Theo-
rem 14. We show that for fast functions the treecost of graphs with a poly-
nomial number of minimal separators can be computed efficiently. Our ap-
proach to this problem follows the ideas of Bouchitté and Todinca [6]. (See
also Parra and Scheffler [16].) This allows one to find the treecost efficiently
when the input is restricted to cocomparability graphs, d-trapezoid graphs,
permutation graphs, circle graphs, weakly triangulated graphs and many
others graph classes. See [7] for an encyclopedic survey on graph classes.

A subset S of vertices of a connected graphG is called an a, b-separator for
non adjacent vertices a and b in V (G)\S if a and b are in different connected
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component of the subgraph of G induced by V (G)\S. If no proper subset of
an a, b-separator S separates a and b in this way, then S is called a minimal
a, b-separator. A subset S is referred to as a minimal separator, if there
exist non adjacent vertices a and b for which S is a minimal a, b-separator.
Notice that a minimal separator can be strictly contained in another minimal
separator.

The following result of Dirac [9] is well known.

Theorem 16 ([9]) Graph G is chordal if and only if every minimal separa-
tor of G is a clique.

Lemma 17 Let S be a minimal separator of a chordal graph G and C be
the set of connected components in G \ S. Then for any fast function f

tcf(G) =
∑
C∈C

tcf(G[N [C]]).

Proof. Since S is a minimal separator, we have that every vertex subset
W is a maximal clique in G if and only if W is a maximal clique in exactly
one of the graphs G[N [C]]. Therefore, costf(G) =

∑
C∈C costf(G[N [C]]). By

Theorem 14 this implies the proof of the lemma. ut

Let ∆G be the set of all minimal separators in G. Let S ∈ ∆G be a
minimal separator of a graph G. We denote by GS the supergraph of G
obtaining from G by making all vertices of S adjacent. For a set of minimal
separators Γ ⊆ ∆G we denote by GΓ the graph obtained from G by turning
all separators from Γ into cliques.

There is a deep relation between the minimal separators of a graph and
its minimal triangulations. We need the following generalization of Dirac’s
theorem by Parra and Scheffler [16].

Two separators S and T cross if there are distinct components C and D
of G \ T such that S intersects both of them. If S and T do not cross, they
are called parallel.

Theorem 18 ([16]) (i) Let Γ ⊆ ∆G be a maximal set of pairwise parallel
separators of G. Then H = GΓ is a minimal triangulation of G and ∆H = Γ.
(ii) Let H be a minimal triangulation of a graph G. Then Γ = ∆H is a
maximal set of pairwise parallel separators of G and H = GΓ.

Let S be a minimal separator of a graph G and CS be the set of connected
components of G \ S. A block B is a graph of the form GS[N [C]], where
C ∈ CG. In other words, a block is obtained from a connected component
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of G \ S by adding a clique on a subset of vertices of S that are adjacent to
at least one vertex in C. We denote the set of all blocks associated with a
minimal separator S by BS. The block B ∈ BS is said to be full if it contains
S.

The following characterization of minimal separators is well-known (see
e.g. [11, p. 106]).

Lemma 19 Let S be an a, b-separator of G and let Ga, Gb be two components
of G \S containing a and b, respectively. Then S is a minimal a, b-separator
if and only if every vertex s ∈ S is adjacent to a vertex in each of these
components.

Lemma 19 implies that every set BS contains at least two full blocks.
Also Lemma 19 implies that for every block B = (VB, EB) ∈ BS the set
VB ∩ S is a minimal separator and that B is a full block for VB ∩ S.

Theorem 20 For any graph G and fast function f ,

tcf(G) = min
S∈∆G

∑
B∈BS

tcf(B).

Proof. (≤). Let S be a minimal separator and HS be a minimal tri-
angulation of GS of optimal treecost. By Theorem 18 there is a minimal
triangulation H ⊆ HS of G. By Lemma 11, costf(H) ≤ costf(HS) and by
Theorem 14, tcf(G) ≤ tcf(GS).

For every block B = (BV , BE) ∈ BS, let ({Xi | i ∈ IB}, TB = (IB, FB)) be
a tree decomposition of optimal treecost of this block. For every component
C the vertices N(C) ∩ S induce a clique in B. Hence for every block B ∈
BS and the corresponding tree TB = (IB, FB), there is a node iB ∈ IB
such that XiB contains all vertices of B ∩ S. We choose one such node for
every tree TB. Moreover, by Lemma 19 there is a node i∗ in some of the
trees TB such that the corresponding set Xi∗ contains all vertices of S. We
construct a tree decomposition of GS with treecost

∑
B∈BS

tcf(B) from the
tree decompositions of blocks BS. The tree of this decomposition is obtained
by taking disjoint union of trees TB and making node i∗ adjacent to nodes iB,
B ∈ BS. One can check easily that this is a tree decomposition of GS. The
cost of this decomposition is equal to the sum of the costs of B. Therefore,
tcf(G) ≤ tcf(GS) ≤

∑
B∈BS

tcf(B).

(≥). Let H be a minimal triangulation of G such that tcf(H) = tcf(G).
Let S be a minimal separator of H. By Lemma 17, we have that tcf(H) =
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∑
C∈CS

tcf(H[N [C]]). For every C ∈ CS the corresponding block B ∈ BS is
the induced subgraph of H[N [C]] and hence chordal. Then by Theorem 14

tcf(G) = tcf(H) =
∑
C∈CS

tcf(H[N [C]]) ≥
∑
B∈BS

tcf(B).

By Theorem 18, S is also minimal separator of G. Therefore,∑
B∈BS

tcf(B) ≥ minS∈∆G

∑
B∈BS

tcf(B). ut

Vertex set Ω ⊆ V of a graph G is a potential maximal clique if there is
a minimal triangulation H of G such that Ω is a maximal clique in H. We
denote by ΠG the set of all potential maximal cliques in G. Bouchitté and
Todinca [5] proved that |ΠG| = O(n|∆G|2) and that the potential maximal
cliques can be computed in polynomial time in size of the graph and the
number of its minimal separators.

Let Ω be a potential maximal clique of G. Let C1, C2, . . . , Ck be the con-
nected components of G \ Ω. By Lemma 19, Ω ∩ Ci are minimal separators
and the graphs GΩ[N [Ci]] are blocks. We call these blocks the blocks as-
sociated with Ω. The set of all blocks associated with potential clique Ω is
denoted by BΩ.

The following result was obtained by Bouchitté and Todinca.

Theorem 21 ([6]) Let B = (VB, EB) be one of the full blocks of G corre-
sponding to minimal separator S. Then H = (VH , EH) is a minimal tri-
angulation of B if and only if there is a potential maximal clique Ω ⊆ VB
(maximal clique of G) such that

• S ⊂ Ω;

• H is obtained from B by turning Ω into a clique and taking minimal
triangulations of blocks in B associated with Ω. More precisely, let
B1 = (V1, E1), . . . , Bk = (Vk, Ek) be the blocks from BΩ in B associated
with Ω. Then VH = V1∪· · ·∪Vk ∪Ω and EH = E1∪· · ·∪Ek ∪{{x, y} :
x, y ∈ Ω}.

As a consequence, we have the following result.

Theorem 22 Let B = (VB, EB) be a full block of G corresponding to a
minimal separator S, let f be a fast function. Then

tcf(B) = min
S⊂Ω⊆VB ,Ω∈ΠG

(f(|Ω|) +
∑
Bi∈BΩ

tcf(Bi)).
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Proof. Let H be a minimal triangulation of B with optimal treecost.
Then by Theorem 21 there is a potential maximal clique S ⊂ Ω such that
H is obtained by turning Ω into clique and taking minimal triangulations
H1, H2, . . . , Hk of blocks in B associated with Ω.

By the definition of blocks associated with clique Ω, every cliqueW 6= Ω in
H is maximal if and only if W is a maximal clique in exactly one triangulation
Hi. Then

tcf(B) = costf(H) = f(|Ω|) +
∑
Bi∈BΩ

costf(Hi) ≥ f(|Ω|) +
∑

Xi∈BΩ

tcf(Bi).

In the other direction, let Ω be a maximal potential clique and let Hi

be minimal triangulations of Bi ∈ BΩ with minimum f -cost. Let H be the
triangulation ofB obtained by turning Ω into clique and taking triangulations
H1, H2, . . . , Hk as triangulations of the corresponding associated blocks. The
f -cost of H is at most f(|Ω|) +

∑
Bi∈BΩ

costf(Hi). By Theorem 21, H is a
minimal triangulation and by Theorem 14, tcf(B) ≤ costf(H). ut

Theorem 23 Let f be a fast function and let Tf (n) be the time needed to
compute f(1), . . . , f(n). Then for every graph G there exists an O(n2|∆G|3 +
Tf (n) + n2m|∆G|2) time algorithm for computing the treecost of G.

Proof. To prove the theorem we present the algorithm similar to the
algorithm for treewidth and fill-in by Bouchitté and Todinca [6].

INPUT: G and all its minimal separators.
OUTPUT: tcf(G)

1. Use Bouchitté-Todinca’s algorithm [5] to compute all potential maximal
cliques of G;

2. For every minimal separator compute the set of blocks BS and sort all
blocks by the number of vertices;

3. For every block B = (VB, EB) (and the corresponding minimal separa-
tor S) in order of increasing size do

• tcf(B) :=∞;

• For every potential maximal clique Ω such that S ⊂ Ω ⊆ VB;

compute the blocks BΩ associated with Ω;

• tcf(B) := min(tcf(B), f(|Ω|) +
∑

X∈BΩ
tcf(X));

4. tcf(G) = minS∈∆G

∑
B∈BS

tcf(B).
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The correctness of the algorithm follows from Theorems 14 and 22.
The running time of the first step of the algorithm is O(n2m|∆G|2) (see

[5]). Let b be the number of blocks in G. Because for every minimal separator
S the set BS has cardinality at most n, we have that b ≤ n|∆G| and the
second step can be implemented in O(n|∆G|+mn) time. The third step can
be implemented in O(b|ΠG|+Tf (n)) = O(n|∆G||ΠG|+Tf (n)) = O(n2|∆G|3 +
Tf (n)) time. ut

5 Cographs

In this section, we give a relatively simple algorithm that computes the
treecost of a cograph with respect to a function f , and constructs the cor-
responding tree decomposition. When f(1), . . . , f(n) can be computed in
linear time, the algorithm uses linear time. A polynomial time algorithm for
the problem can be obtained from Theorem 23, as cographs are a subclass
of the permutation graphs and have polynomially many minimal separators;
the algorithm given in this section is faster and simpler, and also works for
functions f that are not fast.

The algorithm follows the same pattern as many algorithms on cographs,
and uses ideas of the algorithm to compute the treewidth of a cograph from
[4]. Let f ◦+j denote the function with for all i ∈ N: (f ◦+j)(i) = f(i+ j).
Any cograph can be formed from graphs with one vertex by the following
operations: disjoint union and product (×), where the product of G1 =
(V1, E1) and G2 = (V2, E2) is formed by taking the disjoint union of G1 and
G2 and then adding all |V1| · |V2| edges between the vertices in V1 and the
vertices in V2.

Lemma 24 Let f : N → R+ be a function. Let G1 = (V1, E1) and G2 =
(V2, E2) be disjoint graphs.
(i) tcf(G1 ∪G2) = tcf(G1) + tcf(G2).
(ii) tcf(G1 ×G2) = min{tcf◦+|V2|(G1), tcf◦+|V1|(G2)}.

Proof. (i) Trivial.
(ii) If we take a triangulation H1 of G1 with minimum (f ◦ +|V2|)-cost,

and then turn V1 into a clique, we obtain a triangulation H of G1 ×G2. For
every maximal clique W in H, W − V1 is a maximal clique in H1, and hence
the f -cost of H is tcf◦+|V2|(G1). Similarly, we can make a triangulation of
G1 ×G2 of f -cost tcf◦+|V1|(G2).

Suppose H is a triangulation of G1 × G2 such that costf(H) is minimal.
Then by Lemma 6, either V1 or V2 forms a clique in H. Suppose V1 is a
clique in H. Let H2 be the triangulation of G2 obtained by restricting H
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to G2. As for every maximal clique W in H2, we have that W ∪ V1 is a
maximal clique in H, we have that tcf(H) = costf(H) = costf◦+|V1|(H2). So
in this case, tcf(H) ≥ tcf◦+|V1|(G2). If V2 forms a clique in H, then similarly,
tcf(H) ≥ tcf◦+|V2|(G1). ut

As one can find in O(|V |+ |E|) time a series of disjoint union and product
operations that build a given cograph [8], the following result can be obtained
similar to many other algorithmic results on cographs:

Theorem 25 Let f : N → R+ be a function. Let Tf (n) be the time needed
to compute f(1), . . . , f(n). Then there is an algorithm that computes tcf(G)
for a given cograph with n vertices and m edges in O(n+m+ Tf (n)) time.

Note that we do not need that f is fast.

6 Graphs of treewidth two

For graphs of treewidth at most two it holds that there always exists a trian-
gulation of minimum f -cost that also has minimum treewidth (i.e., treewidth
two), assuming that f is fast.

Lemma 26 For any fast function f and any graph G, the treecost of G with
respect to f equals the sum over the biconnected components of G of the
treecost of the components with respect to f .

Proof. If we have a triangulation of each biconnected component of G, then
taking these together gives a triangulation of G; noting that each maximal
clique of that triangulation appears once as a maximal clique in a triangula-
tion of a biconnected component shows that the treecost of G is at most the
sum over the biconnected components of their treecosts.

Suppose we have a triangulation H of G of minimum f -cost. By Theo-
rem 14, we may assume that H is a minimal triangulation. Hence, H does
not contain edges between different biconnected components of G; the bi-
connected components of H have the same vertex sets as the biconnected
components of G. Thus, the sum of the f -costs of the triangulations, ob-
tained by restricting H to the different biconnected components equals the
f -cost of H. ut

Lemma 27 Let G = (V,E) be a biconnected graph of treewidth at most two.
Let f be a fast function. Let n = |V |. If n = 2, tcf(G) = f(2), and if n ≥ 3,
tcf(G) = f(3) · (n− 2).
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Proof. If n = 2, then G consists of a single edge, and clearly tcf(G) = f(2).
We use induction to n for the case n ≥ 3. If n = 3, then G is isomorphic

to K3: a clique with three vertices, and hence tcf(G) = f(3). Suppose the
lemma is true up to n − 1. Let G = (V,E) be a biconnected graph with
n ≥ 4 vertices and treewidth at most two.

Take an arbitrary triangulation H of G with maximum clique size 3.
Note that H has exactly n − 2 maximal cliques of size exactly 3 and thus
tcf(G) ≤ costf(H) = f(3) · (n− 2).

Suppose we have a triangulation H of G of optimal f -cost. Consider a
vertex v that is simplicial in H. If NH(v) is not a maximal clique in H − v,
then tcf(G) = f(NH(v)+1)+tcf(H−v) ≥ f(3)+(n−2) ·f(3). If NH(v) is a
maximal clique in H − v, then |NH(v)| ≥ 3, and hence tcf(G) = f(|NH(v) ∪
{v}|) + tcf(H− v)− f(|NH(v)|) ≥ f(|NH(v)|) + (n−2) ·f(3) ≥ (n−1) ·f(3).
(We have used in this step that f is fast.) ut

The proof of the preceding lemma shows that any triangulation of a bicon-
nected graph of treewidth two with maximum clique size three has optimal
f -cost; f any fast function. Such a triangulation can be easily obtained by
taking a vertex v of degree two, making its neighbors adjacent, recursively
triangulating the graph without v, and then adding v back. This is similar
to the algorithm to recognize graphs of treewidth two, see [1]. For an ar-
bitrary (not necessarily biconnected) graph G of treewidth at most two, we
can apply this procedure for every biconnected component separately.

Theorem 28 Let f be a fast function, such that f(1), f(2), and f(3) are
computable. Then there is a linear time algorithm that computes the treecost
with respect to f of a graph of treewidth at most two.

7 Treewidth versus treecost

An interesting question is whether there is always a triangulation with both
optimal treecost and with optimal treewidth. Such a result would have had
nice practical algorithmic consequences (e.g., in the algorithm of Section 4, we
can ignore all separators larger than the treewidth plus one). Unfortunately,
such triangulations do not always exist. In the example, given in Figure 1,
we have a cograph that is formed as follows. G1 is the disjoint union of four
triangles (copies of K3). G2 is the disjoint union of a clique with four vertices
and eight isolated vertices. G is the product of G1 and G2. Let f be the
function f(n) = 2n. Now, a triangulation of minimum treewidth is obtained
by turning V2 into a clique: this gives a maximum clique size of 15 (whereas
when we turn V1 into a clique, we have a triangulation with maximum clique
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size 16.) A triangulation of G1×G2 of minimum f -cost is obtained by turning
V1 into a clique: this gives an f -cost of 212 · (24 + 8); turning V2 into a clique
gives an f -cost of 212 · (4 · 23).

×

G2

G1

Figure 1: A cograph whose triangulation with optimal treecost has not opti-
mal treewidth

More generally, let tcf,k(G) be the minimum f -cost of a tree decomposi-
tion of G of width at most k. The cograph given above is an example of a
graph where tcf,k(G) 6= tcf(G), k the treewidth of G.

We conjecture that the width of a tree decomposition of optimal f -cost
cannot be ‘much’ larger than the treewidth of a graph:

Conjecture 29 Let f be a fast function. There exists a function gf , such
that for all graphs G of treewidth at most k, tcf(G) = tcf,gf (k)(G).

Having such a function gf would help to speed up the algorithm of Sec-
tion 4. A proof of Conjecture 29 would imply that for every polynomial time
computable fast function, the the treecost of graphs of bounded treewidth is
polynomial time computable, because we have the following result.

Theorem 30 Let f : N → R+ be function, such that for each n, f(n) can
be computed. Let k ∈ R+. There exists an algorithm that computes for a
given graph G, tcf,k(G) in O(nk+2) time, plus the time needed to compute
f(1), . . . , f(k + 1).

Proof. We sketch the proof here. Let Πk+1
G be the set of all potential

maximal cliques in G of cardinality at most k + 1. Similar to the proof of
Theorem 22 one can prove the following: Let B = (VB, EB) be a full block
of G corresponding to minimal separator S. Then

tcf,k(G) = min
S⊂Ω⊆VB ,Ω∈Πk+1

G

(f(|Ω|) +
∑
Bi∈BΩ

tcf,k(Bi)).
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The results of Bouchitté and Todinca [5] imply that for a vertex set K one
can recognize in O(|K|m) time if K is a potential maximal clique. If m > kn,
then G has treewidth more than k (see [2]), and hence tcf,k(G) =∞. So, we
may assume that we have a linear number of edges. Therefore, in our case,
a potential maximal clique of size at most k + 1 can be recognized in O(n)
time and the set Πk+1

G can be computed in O(nk+2) time.
Checking if a given set is a separator can be done in O(n) time, so finding

the list of minimal separators of size at most k costs O(nk+1) time. (By
Theorems 18 and 20 only minimal separators of size at most k have to be
considered.)

Now one can use the modified version of the algorithm in the proof of
Theorem 23 restricted to the set of potential maximal cliques of sizes at
most k+ 1 and minimal separators of size at most k to obtain tcf,k(G). ut

There is also a constructive variant of the algorithm (it outputs the desired
tree decomposition) that runs also in O(nk+2) time.

8 Probabilistic networks and vertex weights

Probabilistic networks are the underlying technology of several modern de-
cision support systems. See e.g., [12]. Such a probabilistic network models
independencies and dependencies between statistical variables with help of
a directed acyclic graph. A central problem is the Probabilistic Infer-

ence problem: one must determine the probability distribution of a specific
variable, possibly given the values of some other variables. As this problem
is #P -complete for general networks [17] but many networks used in practice
appear to have small treewidth, an algorithm of Lauritzen and Spiegelhalter
[15] is often used that solves the problem on networks with small treewidth.1

As the same network is used for many computations, it is very useful to
spend much preprocessing time and obtain a tree decomposition that allows
fast computations. Thus, more important than minimizing the width is to
minimize the ‘cost’ of the tree decomposition. While each vertex models
a discrete statistical variable, variables may have a different valence. Let
w(v) ∈ N be the weight of v. w(v) models the number of values v can take,
which directly reflects on the resources (time and space) needed for a compu-
tation. For instance, a binary variable corresponds to a vertex with weight
two. In a tree decomposition of G, the time to process a node is basically the

1To be precise, first the moralization of the network is made: for every vertex, the
set of its direct predecessors is turned into a clique, and then all directions of edges are
dropped.
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product of the weights of the vertices in the corresponding set Xi. In graph
terms, we can model the situation as follows, after [14, 18, 13].

Given are a graph G = (V,E), and a weight function w : V → N. The
total state space of a triangulation H of G is the sum over all maximal cliques
W in H of

∏
v∈W w(v).

Note that when all vertices have weight two (i.e., all variables are binary),
then the total state space is exactly the f -cost with for all i, f(i) = 2i.

Some of the proofs of previous sections can be modified to give similar
results for the problem to find a triangulation of minimum total state space.

Theorem 31 (i) Let G be a graph, with vertices weighted with positive in-
tegers. Then there is a minimal triangulation H with total state space equal
to the minimum total state space of a triangulation of G.
(ii) There exists an algorithm to compute a triangulation with minimum to-
tal state space whose running time is polynomial in the number of minimal
separators of G.
(iii) Given a cograph G with vertices weighted with positive integers, a trian-
gulation of G with minimum total state space can be found in linear time.
(iv) For each k, there is an algorithm that runs in O(nk+2) time, and that
given a graph G with vertices weighted with positive integers, finds among
the tree decompositions of G of width at most k finds one of minimum state
space.

The method to compute the treecost of a graph of treewidth two of Sec-
tion 6 cannot be used for the minimum state space problem when vertices
have different weights.

9 Hardness results

Wen [18] showed that Treecostf is NP-hard when f is the function f(i) =
2i. To be precise, Wen showed that the problem of finding a triangulation
of minimum total state space is NP-hard when all variables are binary. In
this section, we show similar results for a larger class of functions f , using
a different reduction, and we show that the problems remain NP-hard for
cobipartite and for bipartite graphs.

Theorem 32 Let f be a fast function. The Treecostf problem is NP-hard
for cobipartite graphs.

Proof. We reduce from Treewidth. Let an instance of the Treewidth

problem be given: a graph G = (V,E) and an integer k ≤ |V |.

18



We transform G to a graph H as follows: for every v ∈ V , we take
log n vertices v1, . . . , vlogn; and for every edge {v, w} ∈ E, we take the edges
{vi, wj} for all i, j, 1 ≤ i ≤ log n, 1 ≤ j ≤ log n. In addition, we add edges
{vi, vj} for all 1 ≤ i < j ≤ log n.

Claim 33 The treewidth of G is at most k, if and only if the treecost of H
is at most (n− 1) · f((k + 1) log n).

Proof. Suppose we have a minimal tree decomposition ({Xi | i ∈ I}, T =
(I, F )) of G of width at most k.

Taking Yi = {vj | v ∈ Xi, 1 ≤ j ≤ log n}, we have that ({Yi | i ∈ I}, T =
(I, F )) is a tree decomposition of f -cost at most (n− 1) · f((k + 1) log n).

Now, suppose ({Yi | i ∈ I}, T = (I, F )) is a tree decomposition of mini-
mum f -cost of H. By Lemma 3, we assume that this tree decomposition is
minimal. Take for all i ∈ I: Xi = {v ∈ V | v1, . . . , vlog n ∈ Yi}. One can verify
that ({Xi | i ∈ I}, T = (I, F )) is a tree decomposition of G. (The second
condition of tree decomposition can be seen to hold as follows: for every edge
{v, w} ∈ E, the set {v1, . . . , vlog n, w1, . . . , wlog n} forms a clique in H, hence
there is an i ∈ I with {v1, . . . , vlog n, w1, . . . , wlog n} ⊆ Yi (Lemma 5), hence
v, w ∈ Xi.) The width of this decomposition is at most k: if there is an i ∈ I
with |Xi| ≥ k+ 2, then |Yi| ≥ (k+ 2) · log n, and hence the f -cost of the tree
decomposition of H is at least f((k + 2) log n) ≥ 2logn · f((k + 1) log n) >
(n− 1) · f((k+ 1) log n). Hence, we have a tree decomposition of G of width
at most k. ut

Note that if G is a cobipartite graph, then H is a cobipartite graph. As we
can construct H from G in polynomial time, the NP-completeness result now
follows. ut

Theorem 34 Let f be a fast function. The Treecostf problem is NP-hard
for bipartite graphs.

Proof. Let G and H be as in the previous proof, but instead replace every
vertex in G by 2 log n vertices; and let H ′ be obtained from H by subdividing
every edge.

Claim 35 The treewidth of G is at most k, if and only if the treecost of H ′

is at most (n− 1) · f((k + 1)2 log n) + 4 · f(3) · n2 log2 n.

Proof. Make a tree decomposition of H as in the proof of the previous
theorem.
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Suppose the treewidth of G is at most k. For each of the at most 4 ·
n2 log2 n subdivision vertices in H ′, we have that H contains an edge between
its neighbors, and hence we can add a set Xv, containing v and its neighbors
and make it adjacent to a set that contains the neighbors of v. This gives
a tree decomposition of H ′ of f -cost at most (n− 1) · f((k + 1)2 log n) + 4 ·
f(3) · n2 log2 n.

Suppose the treecost of H ′ is at most (n− 1) · f((k+ 1)2 logn) + 4 · f(3) ·
n2 log2 n. Build a tree decomposition of G as in the proof for cobipartite
graphs. Note that f((k + 2)2 logn) ≥ 22 logn · f((k + 1)2 log n) > (n − 1) ·
f((k+1) log n)4·f(3)·n2 log2 n, so we must have that this tree decomposition
has width at most k. ut

Finally, note that H is bipartite when G is bipartite, and that H can be
constructed in polynomial time from G. The theorem now follows from that
fact that Treewidth is NP-complete for bipartite graphs. ut

Corollary 36 Let f be a fast function such that there is an algorithm that
computes for each n, f(n) in time polynomial in n. Then the Treecostf

problem is NP-complete for cobipartite graphs and for bipartite graphs.

In [3], it was shown that there is no algorithm that approximates the
treewidth within a constant additive term unless P = NP . Combining this
result with the proof technique of the NP-hardness results given above can
be used to show:

Theorem 37 If P 6= NP , then for every c ∈ N, there is no polynomial
time algorithm that approximates the treecost of a given graph G within a
multiplicative factor c.

10 Discussion

In this paper, we investigated a notion that gives a more refined view on
what is a ‘good’ tree decomposition of a graph. For several algorithms on
tree decompositions, the function that maps a tree decomposition to the
amount of time spent by the algorithm when using that tree decomposition
is actually somewhat more complicated than the f -costs as used in this paper,
but the f -cost functions come close to these exact models. In addition, the f -
cost often equals the amount of space needed for the algorithm (discounting
small additional overhead, like the pointers between the different nodes of
the tree decomposition).
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We have seen that in several interesting cases, tree decompositions with
optimal f -cost can be computed in polynomial time, and we expect that
in some practical cases, where it makes sense to spend sufficiently many
preprocessing time on finding one good tree decomposition (in particular, in
cases, where the same tree decomposition is used several times with different
data on the same graph or network), some of our methods can be of practical
use.
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