4,019 research outputs found

    Ab-initio Gutzwiller method: first application to Plutonium

    Get PDF
    Except for small molecules, it is impossible to solve many electrons systems without imposing severe approximations. If the configuration interaction approaches (CI) or Coupled Clusters techniques \cite{FuldeBook} are applicable for molecules, their generalization for solids is difficult. For materials with a kinetic energy greater than the Coulomb interaction, calculations based on the density functional theory (DFT), associated with the local density approximation (LDA) \cite{Hohenberg64, Kohn65} give satisfying qualitative and quantitative results to describe ground state properties. These solids have weakly correlated electrons presenting extended states, like spsp materials or covalent solids. The application of this approximation to systems where the wave functions are more localized (dd or ff-states) as transition metals oxides, heavy fermions, rare earths or actinides is more questionable and can even lead to unphysical results : for example, insulating FeO and CoO are predicted to be metalic by the DFT-LDA..

    Kurtosis in Large-Scale Structure as a Constraint on Non-Gaussian Initial Conditions

    Get PDF
    We calculate the kurtosis of a large-scale density field which has undergone weakly non-linear gravitational evolution from arbitrary non-Gaussian initial conditions. It is well known that the weakly evolved {\twelveit skewness} is equal to its initial value plus the term induced by gravity, which scales with the rms density fluctuation in precisely the same way as for Gaussian initial conditions. As in the case of skewness, the evolved {\twelveit kurtosis} is equal to its initial value plus the contribution induced by gravity. The scaling of this induced contribution, however, turns out to be qualitatively different for Gaussian versus non-Gaussian initial conditions. Therefore, measurements of the kurtosis can serve as a powerful discriminating test between the hypotheses of Gaussian and non-Gaussian nature of primordial density fluctuations.Comment: uuencoded compressed tar file including postscript text (17 pages) and 2 postscript figures, submitted to MNRA

    On the morphology of the electron-positron annihilation emission as seen by SPI/INTEGRAL

    Full text link
    The 511 keV positron annihilation emission remains a mysterious component of the high energy emission of our Galaxy. Its study was one of the key scientific objective of the SPI spectrometer on-board the INTEGRAL satellite. In fact, a lot of observing time has been dedicated to the Galactic disk with a particular emphasis on the central region. A crucial issue in such an analysis concerns the reduction technique used to treat this huge quantity of data, and more particularly the background modeling. Our method, after validation through a variety of tests, is based on detector pattern determination per ~6 month periods, together with a normalisation variable on a few hour timescale. The Galactic bulge is detected at a level of ~70 sigma allowing more detailed investigations. The main result is that the bulge morphology can be modelled with two axisymmetric Gaussians of 3.2 deg. and 11.8 deg. FWHM and respective fluxes of 2.5 and 5.4 x 10^-4 photons/(cm^2.s^1). We found a possible shift of the bulge centre towards negative longitude at l=-0.6 +/- 0.2 degrees. In addition to the bulge, a more extended structure is detected significantly with flux ranging from 1.7 to 2.9 x10^-3 photons/(cm^2.s^1) depending on its assumed geometry (pure disk or disk plus halo). The disk emission is also found to be symmetric within the limits of the statistical errors.Comment: This paper has 12 pages and 14 figures. Accepted for publication by the Astrophysical Journa

    The FIR/submm window on galaxy formation

    Get PDF
    Our view on the deep universe has been so far biased towards optically bright galaxies. Now, the measurement of the Cosmic Infrared Background in FIRAS and DIRBE residuals, and the observations of FIR/submm sources by the ISOPHOT and SCUBA instruments begin unveiling the ``optically dark side'' of galaxy formation. Though the origin of dust heating is still unsolved, it appears very likely that a large fraction of the FIR/submm emission is due to heavily-extinguished star formation. Consequently, the level of the CIRB implies that about 2/3 of galaxy/star formation in the universe is hidden by dust shrouds. In this review, we introduce a new modeling of galaxy formation and evolution that provides us with specific predictions in FIR/submm wavebands. These predictions are compared with the current status of the observations. Finally, the capabilities of current and forthcoming instruments for all-sky and deep surveys of FIR/submm sources are briefly described.Comment: 10 pages, Latex, 5 postscript figures, to appear in ``The Birth of Galaxies'', 1999, B. Guiderdoni, F.R. Bouchet, T.X. Thuan & J. Tran Thanh Van (eds), Editions Frontiere

    Simulations of the Microwave Sky and of its ``Observations''

    Full text link
    Here follows a preliminary report on the construction of fake millimeter and sub-millimeter skies, as observed by virtual instruments, e.g. the COBRA/SAMBA mission, using theoretical modeling and data extrapolations. Our goal is to create maps as realistic as possible of the relevant physical contributions which may contribute to the detected signals. This astrophysical modeling is followed by simulations of the measurement process itself by a given instrumental configuration. This will enable a precise determination of what can and cannot be achieved with a particular experimental configuration, and provide a feedback on how to improve the overall design. It is a key step on the way to define procedures for the separation of the different physical processes in the future observed maps. Note that this tool will also prove useful in preparing and analyzing current (\eg\ balloon borne) Microwave Background experiments. Keywords: Cosmology -- Microwave Background Anisotropies.Comment: 6 pages of uuencoded compressed postscript (1.2 Mb uncompressed), to appear in the proceedings of the meeting "Far Infrared and Sub-millimeter Space Missions in the Next Decade'', Paris, France, Eds. M. Sauvage, Space Science Revie

    Stability criteria of the Vlasov equation and quasi-stationary states of the HMF model

    Full text link
    We perform a detailed study of the relaxation towards equilibrium in the Hamiltonian Mean-Field (HMF) model, a prototype for long-range interactions in NN-particle dynamics. In particular, we point out the role played by the infinity of stationary states of the associated N N ~ Vlasov dynamics. In this context, we derive a new general criterion for the stability of any spatially homogeneous distribution, and compare its analytical predictions with numerical simulations of the Hamiltonian, finite NN, dynamics. We then propose and verify numerically a scenario for the relaxation process, relying on the Vlasov equation. When starting from a non stationary or a Vlasov unstable stationary initial state, the system shows initially a rapid convergence towards a stable stationary state of the Vlasov equation via non stationary states: we characterize numerically this dynamical instability in the finite NN system by introducing appropriate indicators. This first step of the evolution towards Boltzmann-Gibbs equilibrium is followed by a slow quasi-stationary process, that proceeds through different stable stationary states of the Vlasov equation. If the finite NN system is initialized in a Vlasov stable homogenous state, it remains trapped in a quasi-stationary state for times that increase with the nontrivial power law N1.7N^{1.7}. Single particle momentum distributions in such a quasi-stationary regime do not have power-law tails, and hence cannot be fitted by the qq-exponential distributions derived from Tsallis statistics.Comment: To appear in Physica

    Large parallel cosmic string simulations: New results on loop production

    Full text link
    Using a new parallel computing technique, we have run the largest cosmic string simulations ever performed. Our results confirm the existence of a long transient period where a non-scaling distribution of small loops is produced at lengths depending on the initial correlation scale. As time passes, this initial population gives way to the true scaling regime, where loops of size approximately equal to one-twentieth the horizon distance become a significant component. We observe similar behavior in matter and radiation eras, as well as in flat space. In the matter era, the scaling population of large loops becomes the dominant component; we expect this to eventually happen in the other eras as well.Comment: 23 pages, 10 figures, 2 tables. V2: combine 3 figures, add 1 table, better discussion + citation of prev. wor

    Ensemble inequivalence, bicritical points and azeotropy for generalized Fofonoff flows

    Get PDF
    We present a theoretical description for the equilibrium states of a large class of models of two-dimensional and geophysical flows, in arbitrary domains. We account for the existence of ensemble inequivalence and negative specific heat in those models, for the first time using explicit computations. We give exact theoretical computation of a criteria to determine phase transition location and type. Strikingly, this criteria does not depend on the model, but only on the domain geometry. We report the first example of bicritical points and second order azeotropy in the context of systems with long range interactions.Comment: 4 pages, submitted to Phys. Rev. Let
    • …
    corecore