6 research outputs found

    An application of multiple behavior SIA for analyzing data from student exams

    Get PDF
    In this paper, we use the generalized SIA distributions developed in Delacroix (2013) with the model described in Delacroix and Boubekki (2012). The aim is to develop an analysis based on SIA theory which allows a researcher in social sciences to suppress uninteresting pseudo-implications a priori in the analysis. More precisely, we look at relations between the success of students to the different questions in an exam, while taking into account a notion of student level in a multiple behavior analysis

    Supercm: Revisiting Clustering for Semi-Supervised Learning

    Get PDF
    The development of semi-supervised learning (SSL) has in recent years largely focused on the development of new consistency regularization or entropy minimization approaches, often resulting in models with complex training strategies to obtain the desired results. In this work, we instead propose a novel approach that explicitly incorporates the underlying clustering assumption in SSL through extending a recently proposed differentiable clustering module. Leveraging annotated data to guide the cluster centroids results in a simple end-to-end trainable deep SSL approach. We demonstrate that the proposed model improves the performance over the supervised-only baseline and show that our framework can be used in conjunction with other SSL methods to further boost their performance

    ProtoVAE: A Trustworthy Self-Explainable Prototypical Variational Model

    Get PDF
    Source at https://nips.cc/.The need for interpretable models has fostered the development of self-explainable classifiers. Prior approaches are either based on multi-stage optimization schemes, impacting the predictive performance of the model, or produce explanations that are not transparent, trustworthy or do not capture the diversity of the data. To address these shortcomings, we propose ProtoVAE, a variational autoencoder-based framework that learns class-specific prototypes in an end-to-end manner and enforces trustworthiness and diversity by regularizing the representation space and introducing an orthonormality constraint. Finally, the model is designed to be transparent by directly incorporating the prototypes into the decision process. Extensive comparisons with previous self-explainable approaches demonstrate the superiority of ProtoVAE, highlighting its ability to generate trustworthy and diverse explanations, while not degrading predictive performance

    RELAX: Representation Learning Explainability

    Get PDF
    Despite the significant improvements that self-supervised representation learning has led to when learning from unlabeled data, no methods have been developed that explain what influences the learned representation. We address this need through our proposed approach, RELAX, which is the first approach for attribution-based explanations of representations. Our approach can also model the uncertainty in its explanations, which is essential to produce trustworthy explanations. RELAX explains representations by measuring similarities in the representation space between an input and masked out versions of itself, providing intuitive explanations that significantly outperform the gradient-based baselines. We provide theoretical interpretations of RELAX and conduct a novel analysis of feature extractors trained using supervised and unsupervised learning, providing insights into different learning strategies. Moreover, we conduct a user study to assess how well the proposed approach aligns with human intuition and show that the proposed method outperforms the baselines in both the quantitative and human evaluation studies. Finally, we illustrate the usability of RELAX in several use cases and highlight that incorporating uncertainty can be essential for providing faithful explanations, taking a crucial step towards explaining representations

    Clinically relevant features for predicting the severity of surgical site infections

    No full text
    Surgical site infections are hospital-acquired infections resulting in severe risk for patients and significantly increased costs for healthcare providers. In this work, we show how to leverage irregularly sampled preoperative blood tests to predict, on the day of surgery, a future surgical site infection and its severity. Our dataset is extracted from the electronic health records of patients who underwent gastrointestinal surgery and developed either deep, shallow or no infection. We represent the patients using the concentrations of fourteen common blood components collected over the four weeks preceding the surgery partitioned into six time windows. A gradient boosting based classifier trained on our new set of features reports, respectively, an AUROC of 0:991 and 0:937 at predicting a postoperative infection and the severity thereof. Further analyses support the clinical relevance of our approach as the most important features describe the nutritional status and the liver function over the two weeks prior to surgery

    Selective Imputation for Multivariate Time Series Datasets with Missing Values

    No full text
    Multivariate time series often contain missing values for reasons such as failures in data collection mechanisms. Since these missing values can complicate the analysis of time series data, imputation techniques are typically used to deal with this issue. However, the quality of the imputation directly affects the performance of downstream tasks. In this paper, we propose a selective imputation method that identifies a subset of timesteps with missing values to impute in a multivariate time series dataset. This selection, which will result in shorter and simpler time series, is based on both reducing the uncertainty of the imputations and representing the original time series as good as possible. In particular, the method uses multi-objective optimization techniques to select the optimal set of points, and in this selection process, we leverage the beneficial properties of the Multi-task Gaussian Process (MGP). The method is applied to different datasets to analyze the quality of the imputations and the performance obtained in downstream tasks, such as classification or anomaly detection. The results show that much shorter and simpler time series are able to maintain or even improve both the quality of the imputations and the performance of the downstream tasks
    corecore