18 research outputs found

    Different Pattern of Immunoglobulin Gene Usage by HIV-1 Compared to Non-HIV-1 Antibodies Derived from the Same Infected Subject

    Get PDF
    A biased usage of immunoglobulin (Ig) genes is observed in human anti-HIV-1 monoclonal antibodies (mAbs) resulting probably from compensation to reduced usage of the VH3 family genes, while the other alternative suggests that this bias usage is due to antigen requirements. If the antigen structure is responsible for the preferential usage of particular Ig genes, it may have certain implications for HIV vaccine development by the targeting of particular Ig gene-encoded B cell receptors to induce neutralizing anti-HIV-1 antibodies. To address this issue, we have produced HIV-1 specific and non-HIV-1 mAbs from an infected individual and analyzed the Ig gene usage. Green-fluorescence labeled virus-like particles (VLP) expressing HIV-1 envelope (Env) proteins of JRFL and BaL and control VLPs (without Env) were used to select single B cells for the production of 68 recombinant mAbs. Ten of these mAbs were HIV-1 Env specific with neutralizing activity against V3 and the CD4 binding site, as well as non-neutralizing mAbs to gp41. The remaining 58 mAbs were non-HIV-1 Env mAbs with undefined specificities. Analysis revealed that biased usage of Ig genes was restricted only to anti-HIV-1 but not to non-HIV-1 mAbs. The VH1 family genes were dominantly used, followed by VH3, VH4, and VH5 among anti-HIV-1 mAbs, while non-HIV-1 specific mAbs preferentially used VH3 family genes, followed by VH4, VH1 and VH5 families in a pattern identical to Abs derived from healthy individuals. This observation suggests that the biased usage of Ig genes by anti-HIV-1 mAbs is driven by structural requirements of the virus antigens rather than by compensation to any depletion of VH3 B cells due to autoreactive mechanisms, according to the gp120 superantigen hypothesis

    Adoption of an “Open” Envelope Conformation Facilitating CD4 Binding and Structural Remodeling Precedes Coreceptor Switch in R5 SHIV-Infected Macaques

    Get PDF
    A change in coreceptor preference from CCR5 to CXCR4 towards the end stage disease in some HIV-1 infected individuals has been well documented, but the reasons and mechanisms for this tropism switch remain elusive. It has been suggested that envelope structural constraints in accommodating amino acid changes required for CXCR4 usage is an obstacle to tropism switch, limiting the rate and pathways available for HIV-1 coreceptor switching. The present study was initiated in two R5 SHIVSF162P3N-infected rapid progressor macaques with coreceptor switch to test the hypothesis that an early step in the evolution of tropism switch is the adoption of a less constrained and more “open” envelope conformation for better CD4 usage, allowing greater structural flexibility to accommodate further mutational changes that confer CXCR4 utilization. We show that, prior to the time of coreceptor switch, R5 viruses in both macaques evolved to become increasingly sCD4-sensitive, suggestive of enhanced exposure of the CD4 binding site and an “open” envelope conformation, and this correlated with better gp120 binding to CD4 and with more efficient infection of CD4low cells such as primary macrophages. Moreover, significant changes in neutralization sensitivity to agents and antibodies directed against functional domains of gp120 and gp41 were seen for R5 viruses close to the time of X4 emergence, consistent with global changes in envelope configuration and structural plasticity. These observations in a simian model of R5-to-X4 evolution provide a mechanistic basis for the HIV-1 coreceptor switch

    Short Communication: Neutralizing Antibody Responses in Recent Seroconverters with HIV-1 Subtype C Infections in India

    No full text
    The longitudinal heterologous neutralization response against two HIV-1 subtype C isolates was studied in 33 ART-naive individuals recently infected with HIV-1 subtype C from India. Seven of 33 (21%) seroconverters demonstrated a consistent response against both isolates (65–100% neutralization), whereas the remaining 26 (79%) were nonresponders. Four of the seven responders demonstrated a neutralization response (>75% neutralization) within 2–3 months of infection and in the remaining three, the response was demonstrated between 22 and 38 months after infection. In the past, HIV vaccines targeted the V3 region for the development of neutralizing antibodies. However, recent studies have shown that anti-V3 antibodies are generated after HIV-1 infection, but are not effective in neutralizing virus. In this study, the V3 sequences of HIV-1 from seven responders were analyzed and compared with those from nonresponders. The V3 region sequences from early and late responders did show certain mutations that were not found in the nonresponders; however none of these mutations could explain the neutralization responses. This suggested that HIV-1 envelope regions other than the V3 domain may be involved in generating a neutralization response. This is the first report that describes the pattern of emergence and persistence of the heterologous neutralization response in recently HIV-1 subtype C-infected individuals from India and studies its association with sequence variation in the V3 region

    Immunopathogenesis of HIV infection.

    No full text
    The rate of progression of HIV disease may be substantially different among HIV-infected individuals. Following infection of the host with any virus, the delicate balance between virus replication and the immune response to the virus determines both the outcome of the infection, i.e. the persistence versus elimination of the virus, and the different rates of progression. During primary HIV infection, a burst of viremia occurs that disseminates virus to the lymphoid organs. A potent immune response ensues that substantially, but usually not completely, curtails virus replication. This inability of the immune system to completely eliminate the virus leads to establishment of chronic, persistent infection that over time leads to profound immunosuppression. The potential mechanisms of virus escape from an otherwise effective immune response have been investigated. Clonal deletion of HIV-specific cytotoxic T-cell clones and sequestration of virus-specific cytotoxic cells away from the major site of virus replication represent important mechanisms of virus escape from the immune response that favor persistence of HIV. Qualitative differences in the primary immune response to HIV (i.e. mobilization of a restricted versus broader T-cell receptor repertoire) are associated with different rates of disease progression. Therefore, the initial interaction between the virus and immune system of the host is critical for the subsequent clinical outcome

    HIV-1 binding and neutralizing antibodies of injecting drug users

    No full text
    Previous studies have demonstrated a stronger seroreactivity against some synthetic peptides responsible for inducing neutralizing antibodies in injecting drug users (IDU) compared to that of individuals sexually infected with HIV-1 (S), but the effectiveness in terms of the neutralizing ability of these antibodies has not been evaluated. Our objective was to study the humoral immune response of IDU by determining the specificity of their antibodies and the presence of neutralizing antibodies. The neutralization capacity against the HIV-1 isolate MN (genotype B), the primary HIV-1 isolate 95BRRJ021 (genotype F), and the seroreactivity with peptides known to induce neutralizing antibodies, from the V2 and V3 loops of different HIV-1 subtypes, were analyzed. Seroreactivity indicates that IDU plasma are more likely to recognize a broader range of peptides than S plasma, with significantly higher titers, especially of V3 peptides. Similar neutralization frequencies of the MN isolate were observed in plasma of the IDU (16/47) and S (20/60) groups in the 1:10 dilution. The neutralization of the 95BRRJ021 isolate was more frequently observed for plasma from the S group (15/23) than from the IDU group (15/47, P = 0.0108). No correlation between neutralization and seroreactivity with the peptides tested was observed. These results suggest that an important factor responsible for the extensive and broad humoral immune response observed in IDU is their infection route. There was very little difference in neutralizing antibody response between the IDU and S groups despite their differences in seroreactivity and health status
    corecore