641 research outputs found

    Production of hypernuclei in multifragmentation of nuclear spectator matter

    Full text link
    In peripheral collisions of relativistic heavy ions highly excited spectators containing Lambda-hyperons can be produced. Such strange spectator matter may undergo a break-up into many fragments (multifragmentation) as it is well established for ordinary nuclear systems. We generalize the statistical multifragmentation model, previously successfully used for the description of experimental data, for the case of hypernuclear systems. We predict relative yields of hypernuclei and the main characteristics of such a break-up. We point at a connection of this phenomenon with a liquid-gas phase transition in hypermatter.Comment: 4 pages including 4 figure

    Formation of hot heavy nuclei in supernova explosions

    Get PDF
    We point out that during the supernova II type explosion the thermodynamical condition of stellar matter between the protoneutron star and the shock front corresponds to the nuclear liquid-gas phase coexistence region, which can be investigated in nuclear multifragmentation reactions. We have demonstrated, that neutron-rich hot heavy nuclei can be produced in this region. The production of these nuclei may influence dynamics of the explosion and contribute to the synthesis of heavy elements.Comment: 6 pages with 4 figure

    External Coulomb and angular momentum influence on isotope composition of nuclear fragments

    Get PDF
    The Markov chain statistical multifragmentation model predicts inhomogeneous distributions of fragments and their isospin in the freeze-out volume caused by an angular momentum and external long-range Coulomb field. These effects can take place in peripheral nucleus-nucleus collisions at intermediate energies and lead to neutron-rich isotopes produced in the midrapidity kinematical region of the reactions.Comment: 4 pages with 2 figures. A talk at the International Conference "Bologna-2000: Structure of the Nucleus at the Dawn of the Century", May 29 - June 3, Bologna, Ital

    Isospin and symmetry energy effects on nuclear fragment production in liquid-gas type phase transition region

    Full text link
    We have demonstrated that the isospin of nuclei influences the fragment production during the nuclear liquid-gas phase transition. Calculations for Au197, Sn124, La124 and Kr78 at various excitation energies were carried out on the basis of the statistical multifragmentation model (SMM). We analyzed the behavior of the critical exponent tau with the excitation energy and its dependence on the critical temperature. Relative yields of fragments were classified with respect to the mass number of the fragments in the transition region. In this way, we have demonstrated that nuclear multifragmentation exhibits a 'bimodality' behavior. We have also shown that the symmetry energy has a small influence on fragment mass distribution, however, its effect is more pronounced in the isotope distributions of produced fragments.Comment: 8 pages, 9 figures, accepted for publication in EPJ

    Production of Neutron-rich Heavy Residues and the Freeze-out Temperature in the Fragmentation of Relativistic 238U Projectiles Determined by the Isospin Thermometer

    Full text link
    Isotope yields of heavy residues produced in collisions of 238U with lead at 1AGeV show indications for a simultaneous break-up process. From the average N-over-Z ratio of the final residues up to Z = 70, the average limiting temperature of the break-up configuration at freeze out was determined to T approximately 5 MeV using the isospin-thermometer method. Consequences for the understanding of other phenomena in highly excited nuclear systems are discussed.Comment: 22 pages, 9 figures, accepted by Nucl. Phys.
    corecore