11 research outputs found

    Repeatability Of Octadecyl Methacrylate-based Monolithic Columns For Capillary Electrochromatography

    No full text
    Octadecyl methacrylate-based monolithic capillary columns were prepared using octadecyl methacrylate as the monomer, ethylene dimethacrylate as the cross-linking agent, 2-acryloylamido-2-methylpropanesulfonic acid as the ionizable monomer, responsible for a negatively charged stationary phase surface and able to support a cathodic electrosmotic flow, and amyl alcohol and 1,4-butanediol as porogenic solvents. The repeatability of the morphological aspect of the monolithic material was evaluated by scanning electron microscopy (SEM). The uniformity along the same monolithic bed was also investigated by SEM. Replicate determinations of surface area and pore volume were also performed and compared. The repeatability of the obtained electrochromatographic efficiencies for separations of alkylbenzenes using the stationary phases prepared was also evaluated. A column that had a plate height of 31 ÎŒm was tested for separation of polycyclic aromatic hydrocarbons. Even though minimal possible variation of experimental parameters was maintained, it was not possible to reproduce the stationary phases of the monolithic columns, since the relative standard deviation for the efficiencies obtained on columns prepared from the same polymerization mixture composition was 62%. The lack of repeatability for the efficiency is thought to be a result of limited homogeneity of the monolithic globular structures along the length of the majority of the prepared columns. The poor precision of preparation was justified by the copolymerization reaction that occurs in the presence of 2, 2â€Č-azobisisobutyronitrile as the initiator agent, whose decomposition starts at the moment that this is added to the reaction mixture.432139155Tang, Q., Lee, M.L., Column Technology for Capillary Electrochromatography (2000) Trends Anal. Chem., 19, pp. 648-663Eeltink, S., Kok, W.Th., Recent Applications in Capillary Electrochromatography (2006) Electrophoresis, 27, pp. 84-96Eeltink, S., Svec, F., FrĂ©chet, J.M.J., Open-tubular Capillary Columns with a Porous Layer of Monolithic Polymer for Highly Efficient and Fast Separations in Electrochromatography (2006) Electrophoresis, 27, pp. 4249-4256Li, W., Fries, D.P., Malik, A., Sol-Gel Stationary Phases for Electrochromatography (2004) J. Chromatogr. A, 1044, pp. 23-52Zajickova, Z., Luna, J., Svec, F., Surface Modification of Silica-based Monolith with Poly(pentafluoropropyl methacrylate) Using Single Step Photografting (2010) J. Liq. Chromatogr. Relat. Technol., 33, pp. 1640-1648Planeta, J., MoravcovĂĄ, D., Roth, M., KarĂĄsek, P., Kahle, V., Silica-based Monolithic Capillary Columns - Effect of Preparation Temperature on Separation Efficiency (2010) J. Chromatogr. A, 1217, pp. 5737-5740BernabĂ©-ZafĂłn, V., CantĂł-Mirapeix, A., SimĂł-Alfonso, E.F., Ramis-Ramos, G., Herrero-MartĂ­nez, J.M., Comparison of Thermal and Photo Polymerization of Lauryl Methacrylate Monolithic Columns for CEC (2009) Electrophoresis, 30, pp. 1929-1936Kositarat, S., Smith, N.W., Nacapricha, D., Wilairat, P., Chaisuwan, P., Repeatability in Column Preparation of a Reversed-phase C18 Monolith and its Application to Separation of Tocopherol Homologues (2011) Talanta, 84, pp. 1374-1378Nischang, I., Teasdale, I., BrĂŒggemann, O., Towards Porous Polymer Monoliths for the Efficient, Retention-independent Performance in the Isocratic Separation of Small Molecules by Means of Nano-liquid Chromatography (2010) J. Chromatogr. A, 1217, pp. 7514-7522Ludewig, R., Nietzsche, S., Scriba, G.K.E., A Weak Cation-exchange Monolith as Stationary Phase for the Separation of Peptide Diastereomers by CEC (2011) J. Sep. Sci., 34, pp. 64-69Yamada, H., Kitagawa, S., Ohtani, H., Simultaneous Separation of Water- and Fat-soluble Vitamins in Isocratic Pressure-assisted Capillary Electrochromatography Using a Methacrylate-based Monolithic Column (2013) J. Sep. Sci., 36, pp. 1980-1985Geiser, L., Eeltink, S., Svec, F., FrĂ©chet, J.M.J., Stability and Repeatability of Capillary Columns Based on Porous Monoliths of Poly(butyl methacrylate-co-ethylene dimethacrylate) (2007) J. Chromatogr. A, 1140, pp. 140-146Nischang, I., Svec, F., FrĂ©chet, J.M.J., Effect of Capillary Cross-section Geometry and Size on the Separation of Proteins in Gradient Mode Using Monolithic Poly(butyl methacrylate-co-ethylene dimethacrylate) Columns (2009) J. Chromatogr. A, 1216, pp. 2355-2361Deyl, Z., Svec, F., (2001) Capillary Electrochromatography, , Elsevier Science B.V.: Berkeley, CASmith, N.W., Jiang, Z., Developments in the Use and Fabrication of Organic Monolithic Phases for Use with High-performance Liquid Chromatography and Capillary Electrochromatography (2008) J. Chromatogr. A, 1184, pp. 416-440Svec, F., Recent Developments in the Field of Monolithic Stationary Phases for Capillary Electrochromatography (2005) J. Sep. Sci., 28, pp. 729-745Urban, J., Svec, F., FrĂ©chet, J.M.J., Hypercrosslinking: New Approach to Porous Polymer Monolithic Capillary Columns of Large Surface Area for the Highly Efficient Separation of Small Molecules (2010) J. Chromatogr. A, 1217, pp. 8212-8221Lubbad, S.H., Buchmeiser, M.R., Fast Separation of Low Molecular Weight Analytes on Structurally Optimized Polymeric Capillary Monoliths (2010) J. Chromatogr. A, 1217, pp. 3223-3230Mohr, J.H., Swart, R., Huber, C.G., Morphology and Efficiency of Poly(styrene-co-divinylbenzene)-based Monolithic Capillary Columns for the Separation of Small and Large Molecules (2011) Anal. Bioanal. Chem., 400, pp. 2391-2402Umemura, T., Ueki, Y., Tsunoda, K., Katakai, A., Tamada, M., Haraguchi, H., Preparation and Characterization of Methacrylate-based Semi-micro Monoliths for High-throughput Bioanalysis (2006) Anal. Bioanal. Chem., 386, pp. 566-571Eeltink, S., Rozing, G.P., Schoenmakers, P.J., Kok, W.Th., Practical Aspects of Using Methacrylate-esterbased Monolithic Columns in Capillary Electrochromatography (2006) J. Chromatogr. A, 1109, pp. 74-79Eeltink, S., Geiser, L., Svec, F., FrĂ©chet, J.M.J., Optimization of the Porous Structure and Polarity of Polymethacrylate-based Monolithic Capillary Columns for the LC-MS Separation of Enzymatic Digests (2007) J. Sep. Sci., 30, pp. 2814-2820Wieder, W., Lubbad, S.H., Trojer, L., Bisjak, C.P., Bonn, G.K., Novel Monolithic Poly(p-methacrylate-co-bis(p-vinylbenzyl)dimethylsilane) Capillary Columns for Biopolymer Separation (2008) J. Chromatogr. A, 1191, pp. 253-262Aguiar, V.S., Bottoli, C.B.G., Development and Characterization of Hydrophobic Organic Monolithic Columns for Use in Capillary Electrochromatography (2013) Microchem. J., 109, pp. 51-57Courtois, J., Szumski, M., Georgsson, F., Irgum, K., Assessing the Macroporous Structure of Monolithic Columns by Transmission Electron Microscopy (2007) Anal. Chem., 79, pp. 335-344Buszewski, B., Szumski, M., Study of Bed Homogeneity of Methacrylate-based Monolithic Columns for Micro-HPLC and CEC (2004) Chromatographia Supplement, 60, pp. S261-S267Svec, F., Peters, E.C., SĂœkora, D., FrĂ©chet, J.M.J., Design of the Monolithic Polymers Used in Capillary Electrochromatography Columns (2000) J. Chromatogr. A, 887, pp. 3-29Hilder, E.F., Svec, F., FrĂ©chet, J.M.J., Polymeric Monolithic Stationary Phases for Capillary Electrochromatography (2002) Electrophoresis, 23, pp. 3934-3953Xu, G., Nambiar, R.R., Blum, F.D., Room-temperature Decomposition of 2,2â€Č-azobis(isobutyronitrile) in Emulsion Gels with and without Silica (2006) J. Colloid Interface Sci., 302, pp. 658-661Nischang, I., Teasdale, I., BrĂŒggemann, O., Porous Polymer Monoliths for Small Molecule Separations: Advancements and Limitations (2011) Anal. Bioanal. Chem., 400, pp. 2289-230

    Physical And Electrophoretic Characterization Of Octadecyl Methacrylate-based Monolithic Columns For Use In Capillary Electrochromatography

    No full text
    Organic monolithic columns with high efficiency were obtained for use in capillary electrochromatography (CEC) from a mixture of monomers (constant concentrations) with different proportions of porogenic solvents (1,4-butanediol with isoamyl alcohol, amyl alcohol or cyclohexanol in the presence or absence of water). The stationary phases were prepared from the precursor monomer octadecyl methacrylate (ODMA), the cross-linking agent ethylene dimethacrylate (EDMA) and the ionizable monomer 2-acryloylamido-2-methylpropanesulfonic acid (AMPS), the latter being necessary to make the stationary phase negatively charged, assuring electrosmotic flow (EOF) during analysis. The monolithic columns synthesized were physically characterized by porosimetry and scanning electron microscopy (SEM), and electrochromatographically characterized by calculation of chromatographic parameters. The most efficient column was prepared using the porogenic solvent amyl alcohol:1,4-butanediol in a 65:35 (v/v) ratio and showed a plate height of 38 ÎŒm. These columns were applied for the separation of alkyl parabens and polycyclic aromatic hydrocarbons (PAH). © 2013 Sociedade Brasileira de QuĂ­mica.243423431Krull, I.S., Stevenson, R.L., Mistry, K., Swartz, M.E., (2000) Capillary Electrochromatography and Pressurized Flow Capillary Electrochromatography. An Introduction, , HNB Publishing: New York USAWeinberger, R., (2000) Practical Capillary Electrophoresis, , CE Technologies Inc.Chappaqua: New York, USAHilder, E.F., Svec, F., FrĂ©chet, J.M.J., (2004) J. Chromatogr., A, 1044, p. 3Buszewski, B., Szumski, M., (2004) Chromatographia, 60, pp. s261Bartle, K.D., Myers, P., (2001) J. Chromatogr., A, 916, p. 3Danquah, M.K., Forde, G.M., (2008) Chem. Eng. J., 140, p. 593Pursch, M., Sander, L.C., (2000) J. Chromatogr., A, 887, p. 313Bartle, K.D., Carney, R.A., Cavazza, A., Cikalo, M.G., Myers, P., Robson, M.M., Roulin, S.C.P., Sealey, K., (2000) J. Chromatogr., A, 892, p. 279Jiskra, J., Claessens, H., Cramers, C.A., (2003) J. Sep. Sci., 26, p. 1305Legido-Quigley, C., Marlin, N.D., Melin, V., Manz, A., Smith, N.W., (2003) Electrophoresis, 24, p. 917Allen, D., El Rassi, Z., (2003) Electrophoresis, 24, p. 3962Li, W., Fries, D.P., Malik, A., (2004) J. Chromatogr., A, 1044, p. 23Lin, J., Wu, X., Lin, X., Xie, Z., (2007) J. Chromatogr., A., 1169, p. 220Lin, J., Huang, G., Lin, X., Xie, Z., (2008) Electrophoresis, 29, p. 4055Eeltink, S., Svec, F., (2007) Electrophoresis, 28, p. 137Courtois, J., Szumski, M., Georgsson, F., Irgum, K., (2007) Anal. Chem., 79, p. 335Segato, M.P., Silva, C.R., Jardim, I.C.S.F., (2009) QuĂ­m. Nova, 32, p. 431Hoegger, D., Freitag, R., (2003) J. Chromatogr., A, 1004, p. 195Ishizuka, N., Minakuchi, H., Nakanishi, K., Hirao, K., Tanaka, N., (2001) Colloids Surf., A, 187-188, p. 273Miyabe, K., Cavazzini, A., Gritti, F., Kele, M., Guiochon, G., (2003) Anal. Chem., 75, p. 6975HuclovĂĄ, J., SatĂ­nskĂœ, D., KarlĂ­cek, R., (2003) Anal. Chem. Acta, 494, p. 133Li, Y., Tolley, H.D., Lee, M.L., (2009) Anal. Chem., 81, p. 9416Okanda, F.M., El Rassi, Z., (2005) Electrophoresis, 26, p. 1988Karenga, S., El Rassi, Z., (2008) J. Sep. Sci., 31, p. 2677Xu, Z., Yang, L., Wang, Q., (2009) J. Chromatogr., A, 1216, p. 3098Lerma-GarcĂ­a, M.J., SimĂł-Alfonso, E.F., Ramis-Ramos, G., Herrero-MatĂ­nez, J.M., (2008) Electrophoresis, 29, p. 4603NĂșñez, O., Ikegami, T., Miyamoto, K., Tanaka, N., (2007) J. Chromatogr., A, 1175, p. 7Tanret, I., Mangelings, D., Heyden, Y.V., (2008) Electrophoresis, 29, p. 4463Ueki, Y., Umemura, T., Iwashita, Y., Odake, T., Haraguchi, H., Tsunoda, K., (2006) J. Chromatogr., A, 1106, p. 106Ueki, Y., Umemura, T., Iwashita, Y., Tsunoda, K., Haraguchi, H., (2005) Chem. Lett., 34, p. 1198Tanret, I., Mangelings, D., Heyden, Y.V., (2008) J. Pharm. Biomed. Anal., 48, p. 264Mangelings, D., Tanret, I., Meert, V., Eeltink, S., Schoenmakers, P.J., Kok, W.Th., Heyden, Y.V., (2007) J. Chromatogr. Sci., 45, p. 578Quigley, C.L., Marlin, N., Smith, N.W., (2004) J. Chromatogr., A, 1030, p. 195Preinerstorfer, B., Bicker, W., Lindner, W., IĂ€mmerhofer, M., (2004) J. Chromatogr., A, 1044, p. 187Buszewski, B., Szumski, M., Sus, S., (2002) LC-GC Europe, 15, p. 792Jiang, Z., Smith, N.W., Ferguson, P.D., Taylor, M.R., (2007) J. Biochem. Biophys. Methods, 70, p. 39Ou, J., Gilson, G.T.T., Oleschik, R.D., (2010) J. Chromatogr., A, 1217, p. 3628Karenga, S., El Rassi, Z., (2010) Electrophoresis, 31, p. 991Tunç, Y., Gölgelioglu, Ç., Hasirci, N., Ulubayram, K., Tuncel, A., (2010) J. Chromatogr., A, 1217, p. 1654Anderson, G.J., Lapier, Z., Cammarata, M.B., Cullum, T.S., Bushey, M.M., (2010) Electrophoresis, 31, p. 1583BernabĂ©-ZafĂłn, V., Beneito-Cambra, M., SimĂł-Alfonso, E.F., Herrero-MartĂ­nez, J.M., (2010) J. Chromatogr., A, 1217, p. 3231Abbood, A., Herrenknecht, C., Proczek, G., Descroix, S., Rodrigo, J., Taverna, M., Smadja, C., (2011) Anal. Bioanal. Chem., 400, p. 459Karenga, S., El Rassi, Z., (2011) Electrophoresis, 32, p. 1033Karenga, S., El Rassi, Z., (2011) Electrophoresis, 32, p. 1044Merhar, M., Podgornik, A., Barut, M., Zigon, M., Strancar, A., (2003) J. Sep. Sci., 26, p. 322Greiderer, A., Trojer, L., Huck, C.W., Bonn, G.K., (2009) J. Chromatogr., A, 1216, p. 7747Svec, F., (2005) J. Sep. Sci., 28, p. 729Eeltink, S., Rozing, G.P., Kok, W.Th., (2003) Electrophoresis, 24, p. 3935Eeltink, S., Rozing, G.P., Schoenmakers, P.J., Kok, W.T., (2006) J. Chromatogr., A, 1109, p. 74Puy, G., Demesmay, C., Rocca, J.L., Iapichella, J., Galarneau, A., Brunel, D., (2006) Electrophoresis, 27, p. 3971Augustin, V., Jardy, A., Gareil, P., Hennion, M.C., (2006) J. Chromatogr., A, 1119, p. 80Thabano, J.R.E., Breadmore, M.C., Hutchinson, J.P., Johns, C., Haddad, P.R., (2007) J. Chromatogr., A, 1175, p. 117Wang, X., Lin, X., Xie, Z., Giesy, J.P., (2009) J. Chromatogr., A, 1216, p. 4611Haginaka, J., Futagami, A., (2008) J. Chromatogr., A, 1185, p. 258Gregg, S.J., Sing, K.S.W., (1982) Adsorption Surface Area and Porosity, , Academic Press: London, UKBernabĂ©-ZafĂłn, V., CantĂł-Mirapeix, A., SimĂł-Alfonso, E.F., Ramis-Ramos, G., Herrero-MartĂ­nez, J.M., (2009) Electrophoresis, 30, p. 1929CantĂł-Mirapeix, A., Herrero-MartĂ­nez, J.M., Mongay-FernĂĄndez, C., SimĂł-Alfonso, E.F., (2009) Electrophoresis, 30, p. 599CantĂł-Mirapeix, A., Herrero-MartĂ­nez, J.M., Mongay-FernĂĄndez, C., SimĂł-Alfonso, E.F., (2008) Electrophoresis, 29, p. 4399Peters, E.C., Petro, M., Svec, F., FrĂ©chet, J.M.J., (1997) Anal. Chem., 69, p. 3646Webb, P.A., Orr, C., (1997) Analytical Methods in Fine Particle Technology, , Micromeritics Instrument Corporation: Norcross USAVansant, E.F., Van Der Voort, P., Vrancken, K.C., (1995) Characterization and Chemical Modification of the Silica Surface, , Elsevier: Amsterdam, HollandTeixeira, V.G., Coutinho, F.M.B., Gomes, A.S., (2001) QuĂ­m. Nova, 24, p. 808Sing, K.S.W., Everett, D.H., Haul, R.A.W., Moscou, L., Pierotti, R.A., RouquĂ©rol, J., Siemieniewska, I., (1985) Pure Appl. Chem., 57, p. 603Bereznitski, Y., Jaroniec, M., Gangoda, M.E., (1998) J. Chromatogr., A, 828, p. 5

    Chromatographic Evaluation Of Self-immobilized Stationary Phases For Reversed-phase Liquid Chromatography

    No full text
    The preparation of stationary phases for HPLC using polymers deposited on silica usually includes an immobilization step involving cross-linking by free radicals induced by ionizing radiation or by other radical initiators. The present paper reports changes which occur at ambient temperature in the character of poly(methyloctylsiloxane) deposited on porous silica particles as a function of the time interval between particle loading and column packing. Column performance and retention factors increase with time and these changes are attributed to rearrangement (self-assembly) which result in "self-immobilization" of the polymer molecules on the silica surface. © 2002 Elsevier Science B.V. All rights reserved.98701/02/158792Snyder, L.R., Kirkland, J.J., Glajch, J.L., Practical HPLC Method Development (1997), p. 189. , New York: WileyKirkland, J.J., Glajch, J.L., Farlee, R.D., (1989) Anal. Chem., 61, p. 2Pesek, J.J., Matyska, M.T., Sandoval, J.E., Williamsen, E.J., (1996) J. Liq. Chromatogr. Rel. Technol., 19, p. 2843Voort, P.V.D., Vansant, E.F., (1996) J. Liq. Chromatogr. Rel. Technol., 19, p. 2723Buszewski, B., Jezierska, M., Welniak, M., Berek, D., (1998) J. High Resolut. Chromatogr., 21, p. 267Sander, L.C., Pursch, M., Wise, S.A., (1999) Anal. Chem., 71, p. 4821Fairbank, R.W.P., Wirth, M.J., (1999) J. Chromatogr. A, 830, p. 285Hanai, T., (2000) Adv. Chromatogr., 40, p. 315Silva, C.R., Bachmann, S., Schefer, R.R., Albert, K., Jardim, I.C.S.F., Airoldi, C., (2002) J. Chromatogr. A, 948, p. 85Petro, M., Berek, D., (1993) Chromatographia, 37, p. 549Hanson, M., Unger, K.K., (1992) Trends Anal. Chem., 11, p. 368Hanson, M., Kurganov, A., Unger, K.K., Davankov, V.A., (1993) J. Chromatogr. A, 656, p. 369Jardim, I.C.S.F., Collins, K.E., Anazawa, T.A., (1999) J. Chromatogr. A, 849, p. 299Anazawa, T.A., Jardim, I.C.S.F., (1994) J. Liq. Chromatogr., 17, p. 1265Anazawa, T.A., Jardim, I.C.S.F., (1998) J. Liq. Chromatogr. Rel. Technol., 21, p. 645Collins, K.E., Bottoli, C.B.G., Bachmann, S., Vigna, C.R.M., Collins, C.H., Albert, K., Chem. Mater., , in pressCollins, K.E., Franchon, A.C., Jardim, I.C.S.F., Radovanovic, E., Gonçalves, M.C., (2000) LC·GC, 18, p. 106Collins, K.E., Så, A.L.A., Bottoli, C.B.G., Collins, C.H., (2001) Chromatographia, 53, p. 661Collins, K.E., Granja, M.L.M.M., Pereira Filho, R.G., Anazawa, T.A., Jardim, I.C.S.F., (1997) Chromatographia, 45, p. 99Claessens, H.A., Van Straten, M.A., Cramers, C.A., Jezierska, M., Buszewski, B., (1998) J. Chromatogr. A, 826, p. 135Stella, C., Rudaz, S., Veuthey, J.-L., Tchapla, A., (2001) Chromatographia, 53, p. 132Claessens, H.A., (2001) Trends Anal. Chem., 20, p. 563Engelhardt, H., Arangio, M., Lobert, T., (1997) LC·GC, 15, p. 856Walters, M.J., (1987) J. Assoc. Off. Anal. Chem., 70, p. 465Kimata, K., Iwaguchi, K., Onishi, S., Jinno, K., Eksteen, R., Hosoya, K., Araki, M., Tanaka, N., (1989) J. Chromatogr. Sci., 27, p. 72

    Nano-liquid Chromatography In Pharmaceutical And Biomedical Research

    No full text
    Miniaturized separation techniques have emerged as environmentally friendly alternatives to available separation methods. Nano-liquid chromatography (nano-LC), microchip devices and nano-capillary electrophoresis are miniaturized methods that minimize reagent consumption and waste generation. Furthermore, the low levels of analytes, especially in biological samples, promote the search for more highly sensitive techniques; coupled to mass spectrometry, nano-LC has great potential to become an indispensable tool for routine analysis of biomolecules. This short review presents the fundamental aspects of nano-LC analytical instrumentation, discussing practical considerations and the primary differences between miniaturized and conventional instrumentation. Some theoretical aspects are discussed to better explain both the potential and the principal limitations of nano-LC. Recent pharmaceutical and biomedical applications of this separation technique are also presented to indicate the satisfactory performance for complex matrices, especially for proteomic analysis, that is obtained with nano-LC. © [2013] The Author.517694703Golay, M.J.E., (1958) Gas Chromatography, pp. 36-55. , Butterworths Scientific Publications Ltd., LondonHorvath, C.G., Preiss, B.A., Lipsky, S.R., Fast liquid chromatography: An investigation of operating parameters and the separation of nucleotides on pellicular ion exchangers (1967) Analytical Chemistry, 39, pp. 1422-1428Karlsson, K.E., Novotny, M., Separation efficiency of slurry-packed liquid chromatography microcolumns with very small inner diameters (1988) Analytical Chemistry, 60, pp. 1662-1665Cutillas, P.R., Principles of nanoflow liquid chromatography and applications to proteomics (2005) Current Nanoscience, 1, pp. 65-71Cooper, J.W., Wang, Y., Lee, C.S., Recent advances in capillary separations for proteomics (2004) Electrophoresis, 25, pp. 3913-3926Szumski, M., Buszewski, B., State of the art in miniaturized separation techniques (2002) Critical Reviews in Analytical Chemistry, 32, pp. 1-46Ishii, D., (1988) Introduction to Micro-scale High Performance Liquid Chromatography, pp. 1-208. , VCH Publishers, New YorkVissers, J.P.C., Claessens, H.A., Cramers, C.A., Microcolumn liquid chromatography: Instrumentation, detection and applications (1997) Journal of Chromatography A, 779, pp. 1-28Chevert, J.P., Ursem, M., Salzman, J.P., Instrumental requirements for nanoscale liquid chromatography (1996) Analytical Chemistry, 68, pp. 1507-1512Rieux, L., Sneekes, E.-J., Swart, R., Nano, L.C., Principles, evolution, and state-of-the-art of the technique (2011) LC-GC North America, 29, pp. 926-934Zotou, A., An overview of recent advances in HPLC instrumentation (2012) Central European Journal of Chemistry, 10, pp. 554-569Belen'Kii, B.G., Gankina, E.S., Mal'Tsev, V.G., (1987) Capillary Liquid Chro-matography, pp. 1-252. , Consultant Bureau, New YorkNoga, M., Sucharski, F., Suder, P., Silberring, J., A practical guide to nano-LC troubleshooting (2007) Journal of Separation Science, 30, pp. 2179-2189Heron, S., Tchapla, A., Chervet, J.P., Influence of injection parameters on column performance in nanoscale high-performance liquid chro-matography (2000) Chromatographia, 51, pp. 495-499Unger, K.K., Skudas, R., Schulte, M.M., Particle packed columns and monolithic columns in high-performance liquid chromatography\Comparison and critical appraisal (2008) Journal of Chromatography A, 1184, pp. 393-415Tanaka, N., Motokawa, M., Kobayashi, H., Hosoya, K., Ikegami, T., Monolithic silica columns for capillary liquid chromatography (2003) Monolithic Materials\Preparation, Properties and Applications, Journal of Chromatography Library 67, Chapter 8, pp. 173-196. , Elsevier Science, AmsterdamLi, Y., Lee, M.L., Biocompatible polymeric monoliths for protein and peptide separations (2009) Journal of Separation Science, 32, pp. 3369-3378Dolman, S., Eeltink, S., Vaast, A., Pelzing, M., Investigation of carryover of peptides in nano-liquid chromatography/mass spectrometry using packed and monolithic capillary columns (2013) Journal of Chromatography B, 912, pp. 56-63Fanali, S., D'Orazio, G., Lomsadze, K., Chankvetadze, B., Enantioseparations with cellulose tris(3-chloro-4-methylphenylcarbamate) in nano-liquid chromatography and capillary electrochromatography (2008) Journal of Chromatography B, 875, pp. 296-303Heus, F., Giera, M., De Kloe, G.E., Van Iperen, D., Buijs, J., Nahar, T.T., Development of a microfluidic confocal fluorescence detection system for the hyphenation of nano-LC to on-line biochemical assays (2010) Analytical and Bioanalytical Chemistry, 398, pp. 3023-3032Profrock, D., Progress and possible applications of miniaturized separation techniques and elemental mass spectrometry for quantitative, heteroatom-tagged proteomics (2010) Analytical and Bioanalytical Chemistry, 398, pp. 2383-2401She, Y.F., Smith, R.D., Advanced nanoscale separations and mass spec-trometry for sensitive high-throughput proteomics (2005) Expert Review of Proteomics, 2, pp. 431-447Gelp, E., Contributions of liquid chromatography-mass spectroscopy to "highlights" of biomedical research (2003) Journal of Chromatography A, 1000, pp. 567-581Bereman, M.S., Williams, T.I., Muddiman, D.C., Development of a nanoLC LTQ orbitrap mass spectrometric method for profiling glycans derived from plasma from healthy, benign tumor control, and epithelial ovarian cancer patients (2009) Analytical Chemistry, 81, pp. 1130-1136Kosicek, M., Kirsch, S., Bene, R., Trkanjec, Z., Titlic, M., Bindila, L., Nano-HPLC-MS analysis of phospholipids in cerebrospinal fluid of Alzheimer's disease patients\A pilot study (2010) Analytical and Bioanalytical Chemistry, 398, pp. 2929-2937Luo, Q., Yue, G., Valaskovic, G.A., Gu, Y., Wu, S.-L., Karger, B.L., On-line 1D and 2D porous layer open tubular/LC-ESI-MS Using 10-mm-i.d. Poly(styrene-divinylbenzene) columns for ultrasensitive proteomic analysis (2007) Analytical Chemistry, 79, pp. 6174-6181Yuan, H., Zhang, L., Hou, C., Zhu, G., Tao, D., Liang, Z., Integrated platform for proteome analysis with combination of protein and peptide separation via online digestion (2009) Analytical Chemistry, 81, pp. 8708-8714Cortezzi, S.S., Garcia, J.S., Ferreira, C.R., Braga, D.P.A.F., Figueira, R.C.S., Iaconelli Jr., A., Secretome of the preimplantation human embryo by bottom-up label-free proteomics (2011) Analytical and Bioanalytical Chemistry, 401, pp. 1331-1339Li, R., Yu, H., Xing, R., Liu, S., Qing, Y., Li, K., Application of nano LC-MS/MS to the shotgun proteomic analysis of the nematocyst proteins from jellyfish Stomolophus meleagris (2012) Journal of Chromatography B, 899, pp. 86-95Amelina, H., Sjodin, M.O.D., Bergquist, J., Cristobal, S., Quantitative subproteomic analysis of age-related changes in mouse liver peroxi-somes by iTRAQ LC-MS/MS (2011) Journal of Chromatography B, 879, pp. 3393-3400Hua, S., Nwosu, C.C., Strum, J.S., Seipert, R.R., An, H.J., Zivkovic, A.M., Site-specific protein glycosylation analysis with glycan isomer differentiation (2012) Analytical and Bioanalytical Chemistry, 403, pp. 1291-1302Tyan, Y.-C., Yang, M.-H., Chen, S.C.-J., Jong, S.-B., Chen, W.-C., Yang, Y.-H., Urinary protein profiling by liquid chromatography/tandem mass spectrometry: ADAM28 is overexpressed in bladder transitional cell carcinoma (2011) Rapid Communications in Mass Spectrometry, 25, pp. 2851-2862Huerta-Ocampo, J.A., Osuna-Castro, J.A., Lino-Lopez, G.J., Barrera-Pacheco, A., Mendoza-Hernandez, G., De Leon-Rodriguez, A., Proteomic analysis of differentially accumulated proteins during ripening and in response to 1-MCP in papaya fruit (2012) Journal of Proteomics, 75, pp. 2160-2169Rogers, R.S., Dharsee, M., Ackloo, S., Sivak, J.M., Flanagan, J.G., Proteomics analyses of human optic nerve head astrocytes following biomechanical strain Molecular & Cellular Proteomics, 2012, p. 11. , First published on November 29, 2011, doi: 10.1074/mcp.M111. 012302Choi, Y.-J., Heo, S.-H., Lee, J.-M., Cho, J.-Y., Identification of azurocidin as a potential periodontitis biomarker by a proteomic analysis of gin-gival crevicular fluid Proteomic Science, , July 28, 2001: 10.1186/1477-5956-9-42Mateos, J., Lourido, L., Fernandez-Puente, P., Calamia, V., Fernandez-Lopez, C., Oreiro, N., Differential protein profiling of synovial fluid from rheumatoid arthritis and osteoarthritis patients using LC-MALDI TOF/TOF (2012) Journal of Proteomics, 75, pp. 2869-2878Liu, C.-H., Hsu, Y.-K., Cheng, Y.-H., Yen, H.-C., Wu, Y.-P., Wang, C.-S., Proteomic analysis of salt-responsive ubiquitin-related proteins in rice roots (2012) Rapid Communications in Mass Spectrometry, 26, pp. 1649-1660Jardin, J., Molle, D., Piot, M., Lortal, S., Gagnaire, V., Quantitative prote-omic analysis of bacterial enzymes released in cheese during ripening (2012) International Journal of Food Microbiology, 155, pp. 19-28Marie, B., Zanella-Cleon, I., Guichard, N., Becchi, M., Marin, F., Novel proteins from the calcifying shell matrix of the pacific oyster Crassostrea gigas (2011) Marine Biotechnology, 13, pp. 1159-1168Gokce, E., Andrews, G.L., Dean, R.A., Muddiman, D.C., Increasing proteome coverage with offline RP HPLC coupled to online RP nanoLC-MS (2011) Journal of Chromatography B, 879, pp. 610-614Joseph, R., Srivastava, O.P., Pfister, R.R., Differential epithelial and stromal protein profiles in keratoconus and normal human corneas (2011) Experimental Eye Research, 92, pp. 282-298Duan, X., Dai, L., Chen, S.-C., Balthasar, J.P., Qu, J., Nano-scale liquid chromatography/mass spectrometry and on-the-fly orthogonal array optimization for quantification of therapeutic monoclonal antibodies and the application in preclinical analysis (2012) Journal of Chromatography A, 1251, pp. 63-73Hernaez, M.L., Ximenez-Embun, P., Martínez-Gomariz, M., Gutierrez-Blazquez, M.D., Nombela, C., Gil, C., Identification of Candida albicans exposed surface proteins in vivo by a rapid prote-omic approach (2010) Journal of Proteomics, 73, pp. 1404-1409Majkic-Singh, N., What is a biomarker? from its discovery to clinical application (2011) Journal of Medicinal Biochemistry, 30, pp. 186-192Atkinson, A.J., Colburn, W.A., Degruttola, V.G., Demets, D.L., Downing, G.J., Hoth, D.F., Biomarkers and surrogate endpoints: Preferred definitions and conceptual framework (2001) Clinical Pharmacology & Therapeutics, 69, pp. 89-95Garcia-Villalba, R., Carrasco-Pancorbo, A., Oliveras-Ferraros, C., Menendez, J.A., Segura-Carretero, A., Fernandez-Gutierrez, A., Uptake and metabolism of olive oil polyphenols in human breast cancer cells using nano-liquid chromatography coupled to electrospray ioniza-tion-time of flight-mass spectrometry (2012) Journal of Chromatography B, 898, pp. 69-77Sjodin, M.O.D., Bergquist, J., Wetterhall, M., Mining ventricular cere-brospinal fluid from patients with traumatic brain injury using hexa-peptide ligand libraries to search for trauma biomarkers (2010) Journal of Chromatography B, 878, pp. 2003-2012Bai, H.-Y., Lin, S.-L., Chung, Y.-T., Liu, T.-Y., Chan, S.-A., Fuh, M.-R., Quantitative determination of 8-isoprostaglandin F2a in human urine using microfluidic chip-based nano-liquid chromatography with on-chip sample enrichment and tandem mass spectrometry (2011) Journal of Chromatography A, 1218, pp. 2085-2090Lim, C.-K., Lord, G., Current developments in LC-MS for pharmaceutical analysis (2002) Biological & Pharmaceutical Bulletin, 25, pp. 547-557Hsieh, S.-H., Huang, H.-Y., Lee, S., Determination of eight penicillin antibiotics in pharmaceuticals, milk and porcine tissues by nano-liquid chromatography (2009) Journal of Chromatography A, 1216, pp. 7186-7194D'Orazio, G., Rocchi, S., Fanali, S., Nano-liquid chromatography coupled with mass spectrometry: Separation of sulfonamides employing non-porous core-shell particles (2012) Journal of Chromatography A, 1255, pp. 277-285Merola, G., Aturki, Z., D'Orazio, G., Gottardo, R., MacChia, T., Tagliaro, F., Analysis of synthetic cannabinoids in herbal blends by means of nano-liquid chromatography (2012) Journal of Pharmaceutical and Biomedical Analysis, 71, pp. 45-53Fanali, S., Camera, E., Chankvetadze, B., D'Orazio, G., Quaglia, M.G., Separation of tocopherols by nano-liquid chromatography (2004) Journal of Pharmaceutical and Biomedical Analysis, 35, pp. 331-337Fanali, S., Aturki, Z., D'Orazio, G., Rocco, A., Separation of basic compounds of pharmaceutical interest by using nano-liquid chromatog-raphy coupled with mass spectrometry (2007) Journal of Chromatography A, 1150, pp. 252-258Si-Ahmed, K., Tazerouti, F., Badjah-Hadj-Ahmed, A.Y., Aturki, Z., D'Orazio, G., Rocco, A., Analysis of hesperetin enantiomers in human urine after ingestion of blood orange juice by using nano-liquid chromatography (2010) Journal of Pharmaceutical and Biomedical Analysis, 51, pp. 225-229D'Orazio, G., Rocco, A., Fanali, S., Fast-liquid chromatography using columns of different internal diameters packed with sub-2 mm silica particles (2012) Journal of Chromatography A, 1228, pp. 213-220Lu, C.-Y., Chang, Y.-M., Tseng, W.-L., Feng, C.-H., Lu, C.-Y., Analysis of angiotensin II receptor antagonist and protein markers at microliter level plasma by LC-MS/MS (2009) Journal of Pharmaceutical and Biomedical Analysis, 49, pp. 123-128(2011) Drugs of Abuse, , http://www.drugabuse.gov/drugs-abuse, US National Institutes of Health, accessed August 15, 2012Zhu, K.Y., Wing Leung, K., Ting, A.K.L., Wong, Z.C.F., Ng, W.Y.Y., Choi, R.C.Y., Microfluidic chip based nano liquid chromatography coupled to tandem mass spectrometry for the determination of abused drugs and metabolites in human hair (2012) Analytical and Bioanalytical Chemistry, 402, pp. 2805-2815Sandra, K., Stals, I., Sandra, P., Claeyssens, M., Van Beeumen, J., Devreese, B., Combining gel and capillary electrophoresis, nano-LC and mass spectrometry for the elucidation of post-translational modifications of Trichoderma reesei cellobiohydrolase i (2004) Journal of Chromatography A, 1058, pp. 263-272Badaloni, E., Barbarino, M., Cabri, W., D'Acquarica, I., Forte, M., Gasparrini, F., Efficient organic monoliths prepared by g-radiation induced polymerization in the evaluation of histone dea-cetylase inhibitors by capillary(nano)-high performance liquid chro-matography and ion trap mass spectrometry (2011) Journal of Chromatography A, 1218, pp. 3862-3875Gao, M., Zhang, P., Hong, G., Guan, X., Yan, G., Deng, C., Novel monolithic enzymatic microreactor based on single-enzyme nano-particles for highly efficient proteolysis and its application in multidimensional liquid chromatography (2009) Journal of Chromatography A, 1216, pp. 7472-7477Krzek, T., Kubckova, A., Microscale separation methods for enzyme kinetic assays (2012) Analytical and Bioanalytical Chemistry, 403, pp. 2185-2195Ma, J., Liang, Z., Qiao, X., Deng, Q., Tao, D., Zhang, L., Organic-inorganic hybrid silica monolith based immobilized trypsin reactor with high enzymatic activity (2008) Analytical Chemistry, 80, pp. 2949-2956Tetala, K.K.R., Van Beek, T.A., Bioaffinity chromatography on monolithic supports (2010) Journal of Separation Science, 33, pp. 422-43

    Possibilities And Limitations Of Using Temperature In Reversed Phase Liquid Chromatography [possibilidades E LimitaçÔes No Uso Da Temperatura Em Cromatografia Líquida De Fase Reversa]

    No full text
    High-temperature liquid chromatography (HTLC) is a technique that presents a series of advantages in liquid phase separations, such as: reduced analysis time, reduced pressure drop, reduced asymmetry factors, modified retentions, controlled selectivities, better efficiencies and improved detectivities, as well as permitting green chromatography. The practical limitations that relate to instrumentation and to stationary phase instability are being resolved and this technique is now ready to be applied for routine determinations.334945953Antia, F.D., Horvath, Cs., (1988) J. Chromatogr., 435, p. 1Yang, B., Zhao, J., Brown, J.S., Blackwell, J., Carr, P.W., (2000) Anal. Chem., 72, p. 125Guillarme, D., Heinisch, S., Rocca, J.L., (2004) J. Chromatogr. A, 1052, p. 39Petersson, P., Euerby, M.R., (2007) J. Sep. Sci., 30, p. 2012Sandra, P., Vanhoenacker, G., (2007) J. Sep. Sci., 30, p. 241Edge, A.M., Shillingford, S., Smith, C., Payne, R., Wilson, I.D., (2006) J. Chromatogr. A, 1132, p. 206Xiang, Y., Yan, B., Yue, B., McNeff C., V., Carr, P.W., Lee, M.L., (2003) J. Chromatogr. A, 983, p. 83Plumb, R., Mazzeo, J.R., Grumbach, E.S., Rainville, P., Jones, M., Wheat, T., Neue, U.D., Johnson, K.A., (2007) J. Sep. Sci., 30, p. 1158Nguyen, D.T.-T., Guillarme, D., Heinisch, S., Barrioulet, M.P., Rocca, J.L., Rudaz, S., Veuthey J.L, (2007) J. Chromatogr. A, 1167, p. 76Xiang, Y., Liu, Y., Lee, M.L., (2006) J. Chromatogr. A, 1104, p. 198De Villiers, A., Cabooter, D., Lynenc, F., Desmet, G., Sandra, P., (2009) J. Chromatogr. A, 1216, p. 3270Guillarme, D., Grata, E., Glauser, G., Wolfender, J.-L., Veuthey, J.-L., Rudaz, S., (2009) J. Chromatogr. A, 1216, p. 3232Szabelski, P., Cavazzini, A., Kaczmarski, K., Liu, X., Van Horn, J., Guiochon, G., (2002) J. Chromatogr. A, 950, p. 41Goheen, S.C., Gibbings, B.M., (2000) J. Chromatogr. A, 890, p. 73Hearn M. T., W., Zhao, G., (1999) Anal. Chem., 71, p. 4874Heinisch, S., Puy, G., Barrioulet, M.P., Rocca, J.L., (2006) J. Chromatogr. A, 1118, p. 234Heinisch, S., Rocca, J.-L., (2009) J. Chromatogr. A, 1216, p. 642Castells, C.B., Gagliardi, L.G., Rafols, C., Roses, M., Bosch, E., (2004) J. Chromatogr. A, 1042, p. 23Castells, C.B., Rafols, C., Roses, M., Bosch, E., (2003) J. Chromatogr. A, 1002, p. 41Gagliardi, L.G., Castells, C.B., Rafols, C., Roses, M., Bosch, E., (2005) J. Chromatogr. A, 1077, p. 159Gagliardi, L.G., Castells, C.B., Ràfols C. Rosés, M., Bosch, E., (2008) J. Sep. Sci., 31, p. 969Roses, M., Subirats, X., Bosch, E., (2009) J. Chromatogr. A, 1216, p. 1756Buckenmaier S. M., C., McCalley, D.V., Euerby, M.R., (2004) J. Chromatogr. A, 1060, p. 117Cheng, Y.-F., WalterT., H., Lu, Z., Iraneta, P., Alden, B.A., Gendreau, C., Neue, U.D., Fisk, R.P., (2000) LCGC N. Am., 18, p. 1162Al-Khateeb, L., Smith, R.M., (2008) J. Chromatogr. A, 120, p. 61Liu, Y., Grinberg, N., Thompson, K.C., Wenslow, R.M., Neue, U.D., Morrison, D., Walter, T.H., Wyndham, K.D., (2005) Anal. Chim. Acta, 554, p. 144Shen;, S., Lee;, H., McCaffrey;, J., Yee;, N., Senanayake;, C., Grinberg;, N., Clark, J., (2006) J. Liq. Chromatogr. Relat. Technol., 29, p. 2823Coym, J.W., Dorsey, J.G., (2004) J. Chromatogr. A, 1035, p. 23Al-Khateeb, L.A., Smith, R.M., (2009) Anal. Bioanal. Chem., 394, p. 1255Fornstedt, T., Zhong, G., Guiochon, G., (1996) J. Chromatogr. A, 741, p. 1McCalley, D.V., (2000) J Chromatogr. A, 902, p. 311Li, J., Hu, Y., Carr, P.W., (1997) Anal. Chem., 69, p. 3884Ells, B., Wang, Y., Cantwell, F.F., (1999) J. Chromatogr. A, 835, p. 3Pereira, L., Aspey, S., Ritchie, H., (2007) J. Sep. Sci., 30, p. 1115Smith, R.M., Burgess, R.J., Chienthavorn, O., Stuttard, J.R., (1999) LC-GC Int., 12, p. 30(1999) LCGC N. Am., 17, p. 938Vanhoenacker, G., Sandra, P., (2006) J. Sep. Sci., 29, p. 1822Hartonen, K., Riekkola, M.-L., (2008) Trends Anal. Chem., 27, p. 1Smith, R.M., (2008) J. Chromatogr. A, 1184, p. 441Yang, Y., (2007) J. Sep. Sci., 30, p. 1131Guillarme, D., Heinisch, S., Gauvrit, J.Y., Lanteri, P., Rocca, J.L., (2005) J. Chromatogr. A, 1078, p. 22Ribeiro R. L., V., Botolli C. B., G., Collins, K.E., Collins, C.H., (2004) J. Braz. Chem. Soc., 15, p. 300Welch, C.J., Brkovic, T., Schafer, W., Gong, X., (2009) Green Chem., 11, p. 1232Teutenberg, T., (2009) Anal. Chim. Acta, 643, p. 1Salvador, A., Chisvert, A., (2005) Anal. Chim. Acta, 537, p. 15Claessens, H.A., Van Straten, M.A., Kirkland, J.J., (1996) J. Chromatogr. A, 782, p. 259Nawrocki, J., Dunlap, C., Li, J., Zhao, J., McNeff, C.V., McCormick, A., Carr, P.W., (2004) J. Chromatogr. A, 1028, p. 1Vanhoenacker, G., Sandra, P., (2008) Anal. Bioanal. Chem., 390, p. 245Andersen, T., Nguyen Q.-N., T., Trones, R., Greibrok, T., (2003) J. Chromatogr. A, 1018, p. 7Marin, S.J., Jones, B.A., Felix, W.D., Clark, J., (2004) J. Chromatogr. A, 1030, p. 255Teutenberg, T., Tuerk, J., Holzhauser, M., Kiffmeyer, T.K., (2006) J. Chromatogr. A, 1119, p. 197Teutenberg, T., Hollebekkers, K., Wiese, S., Boergers, A., (2007) J. Sep. Sci., 30, p. 1101Teutenberg, T., Hollebekkers, K., Wiese, S., Boergers, A., (2009) J. Sep. Sci., 32, p. 1262Neue, U., Van Tran, K., Iraneta, P.C., Alden, B.A., (2003) J. Sep. Sci., 26, p. 174Giegold, S., Holzhauser, M., Kiffmeyer, T., Tuerk, J., Teutenberg, T., Rosenhagen, M., Hennies, D., Wenclawiak, B., (2008) J. Pharm. Biomed. Anal., 46, p. 625McNeff, C.V., Yan, B., Stoll, D.R., Henry, R.A., (2007) J. Sep. Sci., 30, p. 1672(2010), http://www.selerity.com/main/Documents/Series9000Brochure.pdf, acessada em Março(2010), http://www.zirchrom.com/pdf/2003ht.pdf, acessada em MarçoPoppe, H., Kraak, J.C., (1983) J. Chromatogr., 282, p. 399Dolan, J.W., (2002) J. Chromatogr. A, 965, p. 195(2010), http://www.selerity.com/main/Documents/EAS2005Preheater.pdf, acessada em MarçoTeutenberg, T., Goetze, H.-J., Tuerk, J., Ploeger, J., Kiffmeyer, T.K., Schmidt, K.G., Kohorst, W., Weber, H., (2006) J. Chromatogr., A, 1114, p. 89Greibrokk, T., Andersen, T., (2001) J. Sep. Sci., 24, p. 899Greibrokk, T., Andersen, T., (2003) J. Chromatogr. A, 1000, p. 743Lanças, F.M., (2009) 34th International Symposium on High Performance Liquid Phase Separations and Related Technique, , Dresden, AlemanhaYang, Y., Jones, A.D., Mathis, J.A., Francis, M.A., (2002) J. Chromatogr. A, 942, p. 231Yang, Y., Kennedy, T., Kondo, T., (2005) J. Chromatogr. Sci., 43, p. 51

    Preparation Of Stationary Phases For Reversed-phase High-performance Liquid Chromatography Using Thermal Treatments At High Temperature

    No full text
    Batches of poly(methyloctylsiloxane) (PMOS)-loaded silica were prepared by deposition from a solution of PMOS into the pores of HPLC silica. Portions of PMOS-loaded silica were subjected to a thermal treatment at 100 °C for 24 h (condition 1) in a tube furnace under a nitrogen atmosphere. After that, the material was heated for 4 h at higher temperatures (150-400 °C) (condition 2). Heating at higher temperatures produces polymer bilayers. Non-immobilized and thermally treated stationary phases were characterized by percent carbon, 29Si cross-polarization magic angle spinning nuclear magnetic resonance spectroscopy and reversed-phase chromatographic performance. The results show that thermal treatment between 150 and 300 °C accelerates the immobilization process, possibly due to some bond breaking of the polysiloxane, with formation of strong linkages to the surface of the support, resulting in more complete coverage of the silica. The chromatographic results show an improvement of efficiency with the increase of the temperature of condition 2 up to 300 °C and an increase in the resolution of the components, mainly for the phase heated at 300 °C. Such results demonstrate that a two-step thermal treatment (100 °C then 150-300 °C) produces stationary phases with good properties for use in reversed-phase high-performance liquid chromatography. © 2007 Elsevier B.V. All rights reserved.11561-2 SPEC. ISS.6067Schomburg, G., (1991) Trends Anal. Chem., 10, p. 163Petro, M., Berek, D., (1993) Chromatographia, 37, p. 549Jardim, I.C.S.F., Collins, K.E., Collins, C.H., (2004) Microchem. J., 77, p. 191Anazawa, T.A., Jardim, I.C.S.F., (1994) J. Liq. Chromatogr., 17, p. 1265Collins, K.E., Granja, M.L.M.M., Pereira, R.G., Anazawa, T.A., Jardim, I.C.S.F., (1997) Chromatographia, 45, p. 99Mano, E.B., Mendes, L.C., (1999) Introdução a PolĂ­meros. second revised ed., , Edgard BlĂŒcher, SĂŁo PauloPetsev, N.D., Perov, G.I., Alexandrova, M.D., (1985) Chi. Dimitov, Chromatographia, 20, p. 228Gawdizik, J., (1991) Chromatographia, 31, p. 258Bemgard, A., Blomberg, L.G., (1987) J. Chromatogr., 395, p. 125Chuang, C.H., Shanfield, H., Zlatkis, A., (1987) Chromatographia, 23, p. 169Markides, K., Blomberg, L., Buijten, J., WĂ€nnman, T., (1983) J. Chromatogr., 267, p. 29Schomburg, G., Köhler, J., Figge, H., Deege, A., Bien-Vogelsang, U., (1984) Chromatographia, 18, p. 265Jardim, I.C.S.F., Collins, K.E., Anazawa, T.A., (1999) J. Chromatogr. A, 849, p. 299Bottoli, C.B.G., Vigna, C.R.M., Fischer, G., Albert, K., Collins, K.E., Collins, C.H., (2004) J. Chromatogr., 1030, p. 217Bottoli, C.B.G., Collins, K.E., Collins, C.H., (2003) J. Chromatogr. A, 987, p. 87Collins, K.E., Bottoli, C.B.G., Vigna, C.R.M., Bachmann, S., Albert, K., Collins, C.H., (2004) J. Chromatogr. A, 1029, p. 43Morais, L.S.R., Jardim, I.C.S.F., (2005) J. Chromatogr. A, 1073, p. 127Lopes, N.P., Collins, K.E., Jardim, I.C.S.F., (2003) J. Chromatogr. A, 987, p. 77Tonhi, E., Collins, K.E., Collins, C.H., (2005) J. Chromatogr. A, 1075, p. 87Faria, A.M., Collins, K.E., Collins, C.H., (2006) J. Chromatogr. A, 1122, p. 114Pozzebon, J.M., Queiroz, S.C.N., Melo, L.F.C., Kapor, M.A., Jardim, I.C.S.F., (2003) J. Chromatogr. A, 987, p. 381Ohmacht, R., Kele, M., Matus, Z., (1989) Chromatographia, 28, p. 19Collins, K.E., SĂĄ, A.L.A., Bottoli, C.B.G., Collins, C.H., (2001) Chromatographia, 53, p. 661Bottoli, C.B.G., Chaudhry, Z.F., Fonseca, D.A., Collins, K.E., Collins, C.H., (2002) J. Chromatogr. A, 948, p. 121Collins, K.E., Franchon, A.C., Jardim, I.C.S.F., Radovanovic, E., Gonçalves, M.C., (2000) LC-GC, 18, p. 106Bachmann, S., Melo, L.F.C., Silva, R.B., Anazawa, T.A., Jardim, I.C.S.F., Collins, K.E., Collins, C.H., Albert, K., (2001) Chem. Mater., 13, p. 1874Snyder, L.R., Kirkland, J.J., (1979) Introduction to Modern Liquid Chromatography. second ed., , Wiley, New YorkLopes, N.P., Collins, K.E., Jardim, I.C.S.F., (2004) J. Chromatogr. A, 1030, p. 225Nawrocki, J., (1991) Chromatographia, 31, p. 177Kirkland, J.J., Boyes, B.E., DeStefano, J.J., (1994) Am. Lab., 26, p. 3

    Application Of Genetic Algorithm For Selection Of Variables For The Blls Method Applied To Determination Of Pesticides And Metabolites In Wine

    No full text
    A variable selection methodology based on genetic algorithm (GA) was applied in a bilinear least squares model (BLLS) with second-order advantage, in three distinct situations, for determination by HPLC-DAD of the pesticides carbaryl (CBL), methyl thiophanate (TIO), simazin (SIM) and dimethoate (DMT) and the metabolite phthalimide (PTA) in wine. The chromatographic separation was carried out using an isocratic elution with 50:50 (v/v) acetonitrile:water as mobile phase. Preprocessing methods were performed for correcting the chromatographic time shifts, baseline variation and background. The optimization by GA provided a significant reduction of the errors, where for SIM and PTA a decrease of three times the value obtained using all variables, and an improvement in the distribution of them, reducing the observed bias in the results were observed. Comparing the RMSEP of the optimized model with the uncertainty estimates of the reference values it is observed that GA can be a very useful tool in second-order models. © 2006 Elsevier B.V. All rights reserved.5951-2 SPEC. ISS.5158Forrest, S., (1993) Science, 261, p. 872Goldberg, D.E., (1989) Genetic Algorithm in Search, Optimization and Machine Learning, , Addison-Wesley, New York p. 125Bangalore, A.S., Shaffer, R.E., Small, G.W., Arnold, M.A., (1996) Anal. Chem., 68, p. 4200Ding, Q., Smal, G.W., Arnold, M.A., (1998) Anal. Chem., 70, p. 4472Costa Filho, P.A., Poppi, R.J., (2001) Anal. Chim. Acta, 446, p. 39Lomillo, M.A.A., Renedo, O., MartinĂ©z, M.J.A., (2001) Anal. Chim. Acta, 449, p. 167Ghasemi, J., Niazi, A., Leardi, R., (2003) Talanta, 59, p. 311Abdollahi, A., Bagheri, L., (2004) Anal. Chim. Acta, 514, p. 211Dantas Filho, H.A., Souza, E.S.O.N., Visani, V., Barros, S.R.R.C., Saldanha, T.C.B., AraĂșjo, M.C.U., GalvĂŁo, R.K.H., (2005) J. Braz. Chem. Soc., 16, p. 58Ghasemi, J., Ebrahimi, D.M., Hejazi, L., Leardi, R., Niazi, A., (2006) J. Anal. Chem., 61, p. 92Franco, V.G., Perin, J.C., Mantovani, V.E., Goicoechea, H.C., (2006) Talanta, 68, p. 1005Wu, W., Guo, Q., Massart, D.L., Boucon, C., de Jong, S., (2003) Chemometr. Intell. Lab. Syst., 65, p. 83Lopes, J.A., Menezes, J.C., (2003) Chemometr. Intell. Lab. Syst., 68, p. 75GourvĂ©nec, S., Capron, X., Massart, D.L., (2004) Anal. Chim. Acta, 519, p. 11Linder, M., Sundberg, R., (1998) Chemometr. Intell. Lab. Syst., 42, p. 159Linder, M., Sundberg, R., (2002) J. Chemometr., 16, p. 12Damiani, P.C., Nepote, A.J., Bearzotti, M., Olivieri, A.C., (2004) Anal. Chem., 76, p. 2798Marsili, N.R., Lista, A., Band, B.S.F., Goicoechea, H.C., Olivieri, A.C., (2005) Analyst, 130, p. 1291Goicoechea, H.C., Olivieri, A.C., (2005) Appl. Spectrosc., 59, p. 926Haimovich, A., Orselli, R., Escandar, G.M., Olivieri, A.C., (2006) Chemometr. Intell. Lab. Syst., 80, p. 99Faber, N.M., FerrĂ©, J., BoquĂ©, R., Kalivas, J.H., (2002) Chemometr. Intell. Lab. Syst., 63, p. 107Öhman, J., Geladi, P., Wold, S., (1990) J. Chemometr., 4, p. 79Lorber, A., (1986) Anal. Chem., 58, p. 1167Messick, N.J., Kalivas, J.H., Lang, P.M., (1996) Anal. Chem., 68, p. 1572Ho, C.N., Christian, G.D., Davidson, E.R., (1980) Anal. Chem., 52, p. 1071Olivieri, A.C., Faber, N.M., (2005) J. Chemometr., 19, p. 583BoquĂ©, R., Larrechi, M.S., Rius, F.X., (1999) Chemometr. Intell. Lab. Syst., 45, p. 397BoquĂ©, R., Ferre, J., Faber, N.M., Rius, F.X., (2002) Anal. Chim. Acta, 451, p. 313Olivieri, A.C., Faber, N.M., (2004) Chemometr. Intell. Lab. Syst., 70, p. 75Miller-Ihli, N.J., O'Haver, T.C., (1984) Spectrochim. Acta, 39 B, p. 1603http://www.codexalimentarius.net/mrls/pestdes/jsp/pest_q-e.jspPrazen, B.J., Synovec, R.E., Kowalski, B.R., (1998) Anal. Chem., 70, p. 218Riu, J., Rius, F.X., (1996) Anal. Chem., 68, p. 185

    Volatile Organic Contaminants From Plastic Packaging: Development And Validation Of Analytical Methods [contaminantes Volåteis Provenientes De Embalagens Plåsticas: Desenvolvimento E Validação De Métodos Analíticos]

    No full text
    Plastic packaging materials intended for use in food packaging is an area of great interest from the scientific and economic point of view due to the irreversible internationalization and globalization process of food products. Nevertheless, a debate related to food safety aspects has emerged within the scientific community. Therefore, the development of analytical methods that allow identifying and quantifying chemical substances of toxicological potential in the packaging is considered essential. This article focuses on the main analytical methods, including validation parameters, as well as extraction and quantification techniques for determination of volatile organic compounds from food packaging materials.31615221532Rundh, B., (2005) Br. Food J, 107, p. 670Arvanitoyannis, I., Bosnea, L., (2001) Food Rev. Int, 17, p. 291Ahmed, A., Ahmed, N., Salman, A., (2005) Br. Food J, 107, p. 760Hernandez, R.J., Selke, S.E.M., Culter, J.D., (2000) Plastics packaging - properties, processing, applications and regulations, , Hanser: MunichGarcĂ­a, R.S., Silva, A.S., Cooper, I., Franz, R., Losada, P.P., (2006) Trends Food Sci. Technol, 17, p. 354Silva, A.S., GarcĂ­a, R.S., Cooper, I., Franz, R., Losada, P.P., (2006) Trends Food Sci. Technol, 17, p. 535Arvanitoyannis, I., Bosnea, L., (2004) Crit. Rev. Food Sci. Nutr, 44, p. 63Padula, M., Cuervo, M., (2004) Polim. Ci. Tecn, 14, pp. E8Mannheim, C.H., Miltz, J., Letzter, A., (1987) J. Food Sci, 52, p. 737Imai, T., Harte, B.R., Giacin, J.R., (1990) J. Food Sci, 52, p. 158Arora, D.K., Hansen, A.P., Armagost, M.S., (1991) J. Food Sci, 56, p. 1421Konczal, J.B., Harte, B.R., Hoojjat, P., Giacin, J.R., (1992) J. Food Sci, 57, p. 967Bayer, F.L., (2002) Food Addit. Contam, 19 (SUPPL. 1), p. 111Franz, R., Welle, F., (1999) Dtsch. Lebensm.-Rundsch, 95, p. 94Franz, R., Mauer, A., Welle, F., (2004) Food Addit. Contam, 21, p. 265Welle, F., (2005) Food Addit. Contam, 22, p. 999WidĂ©n, H., LeufvĂ©n, A., Nielsen, T., (2004) Food Addit. Contam, 21, p. 993Feigenbaum, A., Dole, P., Aucejo, S., Dainelli, D., Garcia, C.C., Hankemeier, T., N'Gono, Y., Voulzatis, Y., (2005) Food Addit. Contam, 22, p. 956Gnanasekharan, V., Floros, J.D., (1997) Crit. Rev. Food Sci. Nutr, 37, p. 519Mottram, D.S., (1998) Int. J. Food Sci. Technol, 1998, p. 33ANVISA (AgĂȘncia Nacional de VigilĂąncia SanitĂĄria)DisposiçÔes gerais para embalagens e equipamentos plĂĄsticos em contato com alimentos e seus anexos, Resolução n. 105, de 19 de maio de 1999. DiĂĄrio Oficial (da RepĂșblica Federal do Brasil), p. 21-34, BrasĂ­lia: 20 de maio de 1999Ribani, M., Bottoli, C.B.G., Collins, C.H., Jardim, I.C.S.F., Melo, L.F.C., (2004) Quim. Nova, 27, p. 771Soares, L.M.V., (2001) Rev. Inst. Adolfo Lutz, 60, p. 79Normalização e Qualidade Industrial (2003) OrientaçÔes sobre validação de mĂ©todos e ensaios quĂ­micos, DOQ-CGCRE-008, , INMETRO, Instituto Nacional de MetrologiaBrito, N.M., Junior, O.P.A., Polese, L., Ribeiro, M.L., (2003) Pest. Rev. Ecotoxicol. Meio Amb, 13, p. 129Safa, H.L., Bourelle, F., (1999) Packag. Technol. Sci, 12, p. 37NerĂ­n, C., Albiñana, J., Philo, M.R., Castle, L., Raffael, B., Simoneau, C., (2003) Food Addit. Contam, 20, p. 668Paik, J.S., (1992) J. Agric. Food Chem, 40, p. 1822Kaljurand, M., Smit, H.C., (1994) Chromatographia, 39, p. 210LebossĂ©, R., Ducruet, V., Feigenbaum, A., (1997) J. Agric. Food Chem, 45, p. 2836Freire, M.T.D.A., Castle, L., Reyes, F.G.R., Damant, A.P., (1998) Food Addit. Contam, 15, p. 473Reynier, A., Dole, P., Fricoteaux, F., Saillard, P., Feigenbaum, A., (2004) J. Agric. Food Chem, 52, p. 5653WidĂ©n, H., LeufvĂ©n, A., Nielsen, T., (2005) Food Addit. Contam, 22, p. 681Kwapong, O.Y., Hotchkiss, J.H., (1987) J. Food Sci, 52, p. 761Landy, P., Nicklaus, S., Seamon, E., Mielle, P., Guichard, E., (2004) J. Agric. Food Chem, 52, p. 2326Tehrany, E.A., Desobry, S., (2004) Food Addit. Contam, 21, p. 1186Hakkarainen, M., Groning, M., Albertsson, A., (2003) J. Appl. Polym. Sci, 89, p. 867van Willige, R.W.G., Linssen, J.P.H., Legger-huysman, A., Voragen, A.G.J., (2003) Food Addit. Contam, 20, p. 84Soto-Valdez, H., Gramshaw, J.W., Vandengurg, H.J., (1997) Food Addit. Contam, 14, p. 309Wezl, T., Lankmayr, E.P., (2002) Anal. Bioanal. Chem, 372, p. 649GarrigĂłs, M.C., Marin, M.L., Canto, A., SĂĄnchez, A., (2004) J. Chromatogr,. A, 1061, p. 211Nongonierma, A., Cayot, P., QuĂ©rĂ©, J.-L., Springett, M., Voilley, M., (2006) Food Rev. Int, 22, p. 51Zhang, Z., Pawliszyn, J., (1993) Anal. Chem, 65, p. 1843Villberg, K., Veijanen, A., Gustafsson, I., (1998) Polym. Eng. Sci, 38, p. 922Pawliszyn, J., (1997) Solid Phase Microextraction: Theory and Practice, , Wiley-VHC: New YorkEzquerro, O., Pons, B., Tena, M.T., (2003) J. Chromatogr., A, 999, p. 155Baltussen, E., Cramers, C.A., Sandra, P.J.F., (2002) Anal. Bioanal. Chem, 373, p. 3Ezquerro, O., Pons, B., Tena, M.T., (2003) J. Chromatogr., A, 1020, p. 189Lanças, F.M., (1993) Cromatografia em Fase Gasosa, Acta Eventos, , SĂŁo CarlosVillberg, K., Veijanen, A., Gustafsson, I., Wickstrom, K., (1997) J. Chromatogr., A, 791, p. 213Feigenbaum, A., Scholler, D., Bouquant, J., Brigot, G., Ferrier, D., Franz, R., Lillemark, L., Yagoubi, N., (2002) Food Addit. Contam, 19, p. 184Ezquerro, O., Pons, B., Tena, M.T., (2002) J. Chromatogr., A, 963, p. 381Grob, K., (2002) Food Addit. Contam, 19, p. 185Huber, M., Franz, R., (1997) J. High Resol. Chromatogr, 20, p. 427Tomlinson, M.J., Sasaki, T.A., Wilkins, C.L., (1996) Mass Spectrom. Rev, 15, p. 1Sasaki, T.A., Wilkins, C.L., (1999) J. Chromatogr., A, 842, p. 341Konkol, L.M., Cross, R.F., Harding, I.H., Kosior, E., (2003) Food Addit. Contam, 20, p. 859Salafranca, J., Cacho, J., Nerin, C., (2000) J. Chromatogr., A, 51, p. 615Ezquerro, O., Pons, B., Tena, M.T., (2003) J. Chromatogr., A, 985, p. 247Kusch, P., Knupp, G., (2004) J. Polym. Environ, 12, p. 83Franz, R., Welle, F., (2002) Food Addit. Contam, 19, p. 502Sanders, R.A., Zyzak, D.V., Morsch, T.R., Zimmerman, S.P., Searles, P.M., Strothers, M.A., Eberhart, B.L., Woo, A.K., (2005) J. Agric. Food Chem, 53, p. 1713Nielsen, T., Damant, A.P., Castle, L., (1997) Food Addit. Contam, 14, p. 685Ezquerro, O., Pons, B., Tena, M.T., (2003) J. Chromatogr. A, 1008, p. 123Cruz, S.A., Zanin, M., Nerin, C., Moraes, M.A.B., (2006) Food Addit. Contam, 23, p. 10

    Monolithic Stationary Phases For Chromatographic Separations [fases Estacionårias Monolíticas Para SeparaçÔes Cromatogråficas]

    No full text
    Monolithic stationary phases represent a new generation of Chromatographic separation media. These phases consist of a continuous separation bed prepared by in situ polymerization or consolidation inside the column tubing. In recent years, their simple preparation procedure, unique properties and excellent performance have attracted quite remarkable attention in liquid chromatography and capillary electrochromatography. This review summarizes the preparation, characterization and applications of monolithic stationary phases. The analytical potential of these columns is demonstrated with separations involving various families of compounds in different separation modes.292300309Svec, F., Peters, E.C., SĂœkora, D., FrĂ©chet, J.M.J., (2000) J. Chromatogr., A, 887, p. 3Tanaka, N., Kobayashi, H., (2003) Anal. Bioanal. Chem., 376, p. 298Zou, H., Huang, X., Ye, M., Luo, Q., (2002) J. Chromatogr., A, 954, p. 5MacNair, J.E., Patel, K.D., Jorgenson, J.W., (1999) Anal. Chem., 71, p. 700Dittmann, M.M., Rozing, G.P., (1996) J. Chromatogr., A, 744, p. 63Svec, F., FrĂ©chet, J.M.J., (1992) Anal Chem., 64, p. 820Ishizuka, N., Minakuchi, H., Nakanishi, K., Hirao, K., Tanaka, N., (2001) Colloids Surf., A, 187, p. 273RouquĂ©rol, J., Avnir, D., Fairbridge, C.W., Everett, D.H., Haynes, J.H., Pericone, N., Ramsay, J.D.F., Unger, K.K., (1994) Pure Appl. Chem., 66, p. 1739Vallano, P.T., Mazenko, R.S., Woolf, E.J., Matuszewski, B.K., (2002) J. Chromatogr., B: Biomed. Sci. Appl., 779, p. 249Hefnawy, M.M., Aboul-Enein, H.Y., (2004) Anal. Chim. Acta, 504, p. 291Gusev, I., Huang, X., HorvĂĄth, C., (1999) J. Chromatogr., A, 855, p. 273Ross, W.D., Jefferson, R.T., (1970) J. Chromatogr. Sci., 8, p. 386HjertĂ©n, S., Liao, J.L., Zhang, R., (1989) J. Chromatogr., 473, p. 273Minakuchi, H., Nakanishi, K., Soga, N., Ishizuka, N., Tanaka, N., (1996) Anal. Chem., 68, p. 3498Shintani, Y., Zhou, X., Furuno, M., Minakuchi, H., Nakanishi, K., (2003) J. Chromatogr., A, 958, p. 351Beclair, M., El Rassi, Z., (2004) J. Chromatogr., A, 1044, p. 177HuclovĂĄ, J., SatĂ­nskĂœ, D., Karh́cek, R., (2003) Anal. Chim. Acta, 494, p. 133Hayes, J.D., Malik, A., (2000) Anal. Chem., 72, p. 4090Malik, A., (2002) Electrophoresis, 23, p. 3973Hilder, E.F., Svec, F., FrĂ©chet, J.M.J., (2002) Electmphoresis, 23, p. 3934Hoegger, D., Freitag, R., (2003) J. Chromatogr., A, 1004, p. 195Moravcova, D., Jandera, P., Urban, J., Planeta, J., (2004) J. Sep. Sci., 27, p. 789Moravcova, D., Jandera, P., Urban, J., Planeta, J., (2003) J. Sep. Sci., 26, p. 1005Petro, M., Svec, F., FrĂ©chet, J.M.J., (1996) J. Chromatogr., A, 752, p. 59SĂœkora, D., Svec, F., FrĂ©chet, J.M.J., (1999) J. Chromatogr., A, 852, p. 297Miyabe, K., Cavazzini, A., Gritti, F., Kele, M., Guiochon, G., (2003) Anal. Chem., 75, p. 6975Hilder, E.F., Svec, F., FrĂ©chet, J.M.J., (2004) J. Chromatogr., A, 1044, p. 3Hoegger, D., Freitag, R., (2001) J. Chromatogr., A, 914, p. 211Premstaller, A., Oberacher, H., Walcher, W., Timperio, A.M., Zolla, L., Chervet, J.P., Cavusoglu, N., Huber, C.G., (2001) Anal. Chem., 73, p. 2390Oberacher, H., Premstaller, A., Huber, C.G., (2004) J. Chromatogr., A, 1030, p. 201Quigley, C.L., Marlin, N., Smith, N.W., (2004) J. Chromatogr., A, 1030, p. 195Buszewski, B., Szumski, M., (2004) Chromalographia, 60, p. 261Jiang, T., Jiskra, J., Claessens, H.A., Cramers, C.A., (2001) J. Chromatogr., A, 923, p. 215Preinerstorfer, B., Bicker, W., Lindner, W., LĂ€mmerhofer, M., (2004) J. Chromatogr., A, 1044, p. 187Fu, H., Xie, C., Xiao, H., Dong, J., Hu, J., Zou, H., (2004) J. Chromatogr., A, 1044, p. 237Fu, H., Xie, C., Dong, J., Huang, X., Zou, H., (2004) Anal. Chem., 76, p. 4866Lee, D., Svec, F., FrĂ©chet, J.M.J., (2004) J. Chromatogr., A, 1051, p. 53Bedair, M., El Rassi, Z., (2003) J. Chromatogr., A, 1013, p. 35LĂ€mmerhofer, M., Svec, F., FrĂ©chet, J.M.J., Lindner, W., (2001) J. Chromatogr., A, 925, p. 265Grafnetter, J., Coufal, P., TesarovĂĄ, E., SuchĂĄncovĂĄ, J., BosĂĄkovĂĄ, Z., SevcĂ­k, J., (2004) J. Chromatogr., A, 1049, p. 43Bedair, M., El Rassi, Z., (2003) J. Chromatogr., A, 1013, p. 47Fujimoto, C., Fujise, Y., (1996) Anal. Chem., 68, p. 2753Shu, X., Chen, L., Yang, B., Guan, Y., (2004) J. Chromatogr., A, 1052, p. 205Ericson, C., Liao, J., Nakazato, K., HjertĂ©n, S., (1997) J. Chromatogr., A, 767, p. 33Rohr, T., Hilder, E.F., Donovan, J.J., Svec, F., FrĂ©chet, J.M.J., (2003) Macromolecules, 36, p. 1677Chankvetadze, B., Ikai, T., Yamamoto, C., Okamoto, Y., (2004) J. Chromatogr., A, 1042, p. 55Chen, Z., Uchiyama, K., Hobo, T., (2002) J. Chromatogr., A, 942, p. 83LĂ€mmerhofer, M., Peters, E.C., Yu, C., Svec, F., FrĂ©chet, J.M.J., (2000) Anal. Chem., 72, p. 4614Liu, Z.S., Xu, Y.L., Yan, C., Gao, R.Y., (2004) Anal. Chim. Acta, 523, p. 243Huang, X., Zou, H., Chen, X., Luo, Q., Kong, L., (2003) J. Chromatogr., A, 984, p. 273Motokawa, M., Kobayashi, H., Ishizuka, N., Minakuchi, H., Nakanishi, K., Jinnai, H., Hosoya, K., Tanaka, N., (2002) J. Chromatogr., A, 961, p. 53Ishizuka, N., Minakuchi, H., Nakanishi, K., Soga, N., Nagayama, H., Hosoya, K., Tanaka, N., (2000) Anal. Chem., 72, p. 1275Siouffi, A.M., (2003) J. Chromatogr., A, 1000, p. 801Lubda, D., Cabrera, K., Nakanishi, K., Minakuchi, H., (2002) J. Sol-gel Sci. Technol., 23, p. 185Aziaie, R., Huang, X., Faman, D., HorvĂĄth, C., (1998) J. Chromatogr., A, 806, p. 251Tang, Q., Xin, B., Lee, M., (1999) J. Chromatogr., A, 837, p. 35Engelhardt, H., Götzinger, A., (2004) Chromatographia, 60, p. 207Svec, F., (2003) LC-GC Europe, 16, p. 24MartĂ­nez, J.M.H., MĂ©ndez, A., Bosch, E., RosĂ©s, M., (2004) J. Chromatogr., A, 1060, p. 135Ikegami, T., Tanaka, N., (2004) Curr. Opin. Chem. Biol., 8, p. 527McCalley, D., (2002) J. Chromatogr., A, 965, p. 51Yan, L., Zhang, Q., Zhang, J., Zhang, L., Li, T., Feng, Y., Zhang, L., Zhang, Y., (2004) J. Chromatogr., A, 1046, p. 255Shi, Z.G., Feng, Y.Q., Xu, L., Zhang, M., Da, S.L., (2004) Talanta, 63, p. 593Pavli, V., Kmetec, V., (2004) J. Pharm. Biomed. Anal., 36, p. 257Schmidt, A.H., (2005) J. Chromatogr., A, 1073, p. 377Enein, H.Y.A., Ali, I., (2005) Talanta, 65, p. 276Rocheleau, M.J., Jean, C., Bolduc, J., Carazzato, D., (2003) J. Pharm. Biomed. Anal., 31, p. 191Walcher, W., Oberacher, H., Troiani, S., Hölzl, G., Oefner, P., Zolla, L., Huber, C.G., (2002) J. Chromatogr., B: Biomed. Sci. Appl., 782, p. 111Premstaller, A., Oefner, P.J., Oberacher, H., Huber, C.G., (2002) Anal Chem., 74, p. 4688Huang, X., Qin, F., Chen, X., Liu, Y., Zou, H., (2004) J. Chromatogr., B: Biomed. Sci. Appl., 804, p. 13Allen, D., El Rassi, Z., (2004) J. Chromatogr., A, 1029, p. 239Peters, E.C., Petro, M., Svec, F., FrĂ©chet, J.M.J., (1998) Anal. Chem., 70, p. 229

    Thermal Immobilization Of Poly(methyloctylsiloxane) In The Pores Of Chromatographic Silica

    No full text
    Poly(methyloctylsiloxane), PMOS, can be thermally immobilized in porous silica particles at temperatures of 80 to 150 °C to produce monolayer stationary phases and efficient reversed phase columns. Thermal immobilization at higher temperatures (180-280 °C) produces thicker ("bi-layer") stationary phases with much lower HPLC efficiencies - in marked contrast to the efficient "bi-layer" stationary phases previously obtained by gamma-radiation immobilization of PMOS.5311-12661664Poole, C.F., Poole, S.K., (1991) Chromatography Today, , Elsevier, Amsterdam, Ch. 2Petro, M., Berek, D., (1993) Chromatographia, 37, pp. 549-561Schomburg, G., (1990) Gas Chromatography: A Practical Course, , VCH Publishers, New York, Ch. 5Unger, K.K., (1990) Packings and Stationary Phases in Chromatography, , Marcel Dekker, New York, Ch. 6Schomburg, G., (1991) Trends Anal. Chem., 10, pp. 163-169Hanson, M., Kurganov, A., Unger, K.K., Davankov, V.A., (1993) J. Chromatogr. A, 656, pp. 369-380Zhao, J., Carr, P.W., (2000) Anal. Chem., 72, pp. 302-309Schomburg, G., Köhler, J., Figge, H., Deege, A., Bien-Vogelsang, U., (1984) Chromatographia, 18, pp. 265-274Bien-Vogelsang, U., Deege, A., Figge, H., Köhler, J., Schomburg, G., (1984) Chromatographia, 19, pp. 170-179Schomburg, G., Deege, A., Köhler, J., Bien-Vogelsang, U., (1983) J. Chromatogr., 282, pp. 27-39Anazawa, T.A., Jardim, I.C.S.F., (1994) J. Liq. Chromatogr., 17, pp. 1265-1279Da Silva, M.C.H., Jardim, I.C.S.F., (1998) J. Liq. Chromatogr. Rel. Tecnol., 21, pp. 2447-2458Ohmacht, R., Kele, M., Matus, Z., (1989) Chromatographia, 28, pp. 19-23Jardim, I.C.S.F., Collins, K.E., Anazawa, T.A., (1999) J. Chromatogr. A, 849, pp. 299-307Collins, K.E., Bottoli, C.B.G., Bachmann, S., Vigna, C.R.M., Albert, K., Collins, C.H., Chem. Mater, , in pres
    corecore