478 research outputs found

    Early restriction of placental growth results in placental structural and gene expression changes in late gestation independent of fetal hypoxemia

    Get PDF
    Placental restriction and insufficiency are associated with altered patterns of placental growth, morphology, substrate transport capacity, growth factor expression, and glucocorticoid exposure. We have used a pregnant sheep model in which the intrauterine environment has been perturbed by uterine carunclectomy (Cx). This procedure results in early restriction of placental growth and either the development of chronic fetal hypoxemia (PaO₂≤17 mmHg) in late gestation or in compensatory placental growth and the maintenance of fetal normoxemia (PaO2>17 mmHg). Based on fetal PaO₂, Cx, and Control ewes were assigned to either a normoxemic fetal group (Nx) or a hypoxemic fetal group (Hx) in late gestation, resulting in 4 groups. Cx resulted in a decrease in the volumes of fetal and maternal connective tissues in the placenta and increased placental mRNA expression of IGF2, vascular endothelial growth factor (VEGF), VEGFR-2, ANGPT2, and TIE2 There were reduced volumes of trophoblast, maternal epithelium, and maternal connective tissues in the placenta and a decrease in placental GLUT1 and 11βHSD2 mRNA expression in the Hx compared to Nx groups. Our data show that early restriction of placental growth has effects on morphological and functional characteristics of the placenta in late gestation, independent of whether the fetus becomes hypoxemic. Similarly, there is a distinct set of placental changes that are only present in fetuses that were hypoxemic in late gestation, independent of whether Cx occurred. Thus, we provide further understanding of the different placental cellular and molecular mechanisms that are present in early placental restriction and in the emergence of later placental insufficiency.Song Zhang, Paige Barker, Kimberley J. Botting, Claire T. Roberts, Christine M. McMillan, Isabella Caroline McMillen, Janna L. Morriso

    Effects of maternal hypoxia during pregnancy on bone development in offspring: a guinea pig model

    Get PDF
    Low birth weight is associated with reduced bone mass and density in adult life. However, effects of maternal hypoxia (MH) on offspring bone development are not known. Objective. The current study investigated the effects of fetal growth restriction induced by MH during the last half of gestation on bone structure and volume in the offspring of the fetus near term and the pup in adolescence. Methods. During 35-62-day gestation (term, 69d), guinea pigs were housed in room air (21% O2; control) or 12% O2 (MH). Offspring femur and tibia were collected at 62d gestation and 120d after birth. Results. MH decreased fetal birth weight but did not affect osteogenic potential pools in the fetal bone marrow. Histological analysis showed no effects of MH on tibial growth plate thickness in either fetal or postnatal offspring, although there was increased VEGF mRNA expression in the growth plate of postnatal offspring. MH did not change primary spongiosa height but lowered collagen-1 mRNA expression in postnatal offspring. There was increased mRNA expression of adipogenesis-related gene (FABP4) in bone from the MH postnatal offspring. Conclusion. MH during late gestation did not change the pool of osteogenic cells before birth or growth plate heights before and after birth. However, MH reduced expression of bone formation marker (collagen-1) and increased expression of fat formation marker (FABP4) in postnatal offspring bone.Alice M. C. Lee, Janna L. Morrison, Kimberley J. Botting, Tetyana Shandala, and Cory J. Xia

    Chronic hypoxemia in late gestation decreases cardiomyocyte number but does not change expression of hypoxia-responsive genes

    Get PDF
    BACKGROUND: Placental insufficiency is the leading cause of intrauterine growth restriction in the developed world and results in chronic hypoxemia in the fetus. Oxygen is essential for fetal heart development, but a hypoxemic environment in utero can permanently alter development of cardiomyocytes. The present study aimed to investigate the effect of placental restriction and chronic hypoxemia on total number of cardiomyocytes, cardiomyocyte apoptosis, total length of coronary capillaries, and expression of genes regulated by hypoxia. METHODS AND RESULTS: We induced experimental placental restriction from conception, which resulted in fetal growth restriction and chronic hypoxemia. Fetal hearts in the placental restriction group had fewer cardiomyocytes, but interestingly, there was no difference in the percentage of apoptotic cardiomyocytes; the abundance of the transcription factor that mediates hypoxia-induced apoptosis, p53; or expression of apoptotic genes Bax and Bcl2. Likewise, there was no difference in the abundance of autophagy regulator beclin 1 or expression of autophagic genes BECN1, BNIP3, LAMP1, and MAP1LC3B. Furthermore, fetuses exposed to normoxemia (control) or chronic hypoxemia (placental restriction) had similar mRNA expression of a suite of hypoxia-inducible factor target genes, which are essential for angiogenesis (VEGF, Flt1, Ang1, Ang2, and Tie2), vasodilation (iNOS and Adm), and glycolysis (GLUT1 and GLUT3). In addition, there was no change in the expression of PKC-ε, a cardioprotective gene with transcription regulated by hypoxia in a manner independent of hypoxia-inducible factors. There was an increased capillary length density but no difference in the total length of capillaries in the hearts of the chronically hypoxemic fetuses. CONCLUSION: The lack of upregulation of hypoxia target genes in response to chronic hypoxemia in the fetal heart in late gestation may be due to a decrease in the number of cardiomyocytes (decreased oxygen demand) and the maintenance of the total length of capillaries. Consequently, these adaptive responses in the fetal heart may maintain a normal oxygen tension within the cardiomyocyte of the chronically hypoxemic fetus in late gestation.Kimberley J. Botting, I. Caroline McMillen, Heather Forbes, Jens R. Nyengaard, Janna L. Morriso

    The periconceptional environment and cardiovascular disease: does in vitro embryo culture and transfer influence cardiovascular development and health?

    Get PDF
    Assisted Reproductive Technologies (ARTs) have revolutionised reproductive medicine; however, reports assessing the effects of ARTs have raised concerns about the immediate and long-term health outcomes of the children conceived through ARTs. ARTs include manipulations during the periconceptional period, which coincides with an environmentally sensitive period of gamete/embryo development and as such may alter cardiovascular development and health of the offspring in postnatal life. In order to identify the association between ARTs and cardiovascular health outcomes, it is important to understand the events that occur during the periconceptional period and how they are affected by procedures involved in ARTs. This review will highlight the emerging evidence implicating adverse cardiovascular outcomes before and after birth in offspring conceived through ARTs in both human and animal studies. In addition, it will identify the potential underlying causes and molecular mechanisms responsible for the congenital and adult cardiovascular dysfunctions in offspring whom were conceived through ARTs.Monalisa Padhee, Song Zhang, Shervi Lie, Kimberley C. Wang, Kimberley J. Botting, I. Caroline McMillen, Severence M. MacLaughlin and Janna L. Morriso
    • …
    corecore