177 research outputs found

    Aerobic environment ensures viability and anti-oxidant capacity when seeds are wet with negative effect when moist: implications for persistence in the soil

    Get PDF
    Interchangeable effects of temperature, moisture content and oxygen on seed longevity have been mostly examined to estimate seed viability during long-term dry storage, whereas few experiments have studied seed viability under near-natural conditions to evaluate seed persistence in the soil. To this end, we artificially aged seeds of Ranunculus baudotii, a hydrophyte widely distributed in temporary ponds constituting an abundant soil seed bank. Seeds were exposed to controlled ageing at three different relative humidities (RH) under both aerobic and anoxic conditions. Their viability, water content, membrane damage, oxidative stress and anti-oxidant enzymatic defence activity were evaluated. Seed survival was longer at higher relative humidity (97% RH), and lowest at a relative humidity (90% RH) simulating moist but not waterlogged soils. Anoxic conditions showed a protective role on viability at lower moisture contents (70% RH). Seed viability was negatively associated with hydrogen peroxide content and correlated with anti-oxidant enzyme activities, but not with membrane damage. Altogether, these results suggest negative roles for moist soils and anoxia in determining seed persistence in the field, but at higher moisture contents the negative effects of anaerobia diminished. The anti-oxidant system activation, even under unfavourable conditions, might recover seeds once all protective processes can operate, pointing out the plasticity of mechanisms involved in seed loss viability

    Vibration Control of Manipulators with Flexible Nonprismatic Links Using Piezoelectric Actuators and Sensors

    Get PDF
    This work presents a tracking control model for a flexible nonprismatic link robotic manipulator using simultaneously motor torques and piezoelectric actuators. The dynamic model of the flexible manipulator is obtained in a closed form through the Lagrange equations. The control uses the motor torques for the joints tracking control and also to reduce the low-frequency vibration induced in the manipulator links. The stability of this control is guaranteed by the Lyapunov stability theory. Piezoelectric actuators and sensors are added for controlling vibrations with frequencies beyond the reach of motor torque control. The naturals frequencies are calculated by the finite element method, and the approximated eigenfunctions are interpolated by polynomials. Three eigenfunctions are used for the dynamics of the arm, while only two are used for the control. Numerical experiments on Matlab/Simulink are used to verify the efficiency of the control model

    TiO2 nanoparticles may alleviate cadmium toxicity in co-treatment experiments on the model hydrophyte Azolla filiculoides

    Get PDF
    The hydrophyte Azolla filiculoides can be a useful model to assess if TiO2 NPs may in some way alleviate the Cd injuries and improve the ability of the plant to cope with this metal. With this mechanistic hypothesis, after a pre-treatment with TiO2 NPs, A. filiculoides plants were transferred to cadmium-contaminated water with or without TiO2 nanoparticles. After 5 days of treatment, cadmium uptake, morpho-anatomical, and physiological aspects were studied in plants. The continuous presence of TiO2 nanoparticles, though not increasing the uptake of cadmium in comparison with a priming treatment, induced a higher translocation of this heavy metal to the aerial portion. Despite the translocation factor was always well below 1, cadmium contents in the fronds, generally greater than 100 ppm, ranked A. filiculoides as a good cadmium accumulator. Higher cadmium contents in leaves did not induce damages to the photosynthetic machinery, probably thanks to a compartmentalization strategy aimed at confining most of this pollutant to less metabolically active peripheral cells. The permanence of NPs in growth medium ensured a better efficiency of the antioxidant apparatus (proline and glutathione peroxidase and catalase activities) and induced a decrease in H2O2 content, but did not suppress TBARS level

    Mineral nutrients in soil and pea plants after exposition to TiO2 nanoparticles through a biosolid-amended soil

    Get PDF
    In addition to the benefits derived from nanotechnology, there is also concern about the potential risks of engineered nanoparticles (ENPs) when released into the environment. Their possible accumulation and effects in agricultural soils and Nanonnovation 2018 Conference & Exibition crops are closely linked to food and agriculture safety. Particular attention has been focused on the reuse of biosolids from wastewater treatment plants that are considered a cost-effective practice for the improvement of nutrients and organic matter in agricultural soils and, but also a sink of contaminants such as nanoparticles (NPs). TiO2NPs have a global production of about 10.000 tons/year and it are among the most extensively used ENPs. Moreover, dissimilar or inconclusive results have been reported concerning the impact of TiO2 NPs on the soil-crop system, thus more information regarding their behavior are necessary. This study aimed to evaluate the potential effects of TiO2 NPs (anatase and rutile) and larger particles (bulk) on the availability of soil nutrients and on the nutritional status of Pisum sativum plants, simulating low (80 mg/kg) and high load of TiO2 (800 mg/kg ) in a biosolid-amended soil. Treated soils were analyzed for N, P, K, Ca, Mg, Mn, Fe, Cu, Zn, soil microbial community, and plants grown in laboratory for 30d were analyzed for growth, pigments and mineral nutrition. Results showed that the treatment with TiO2 at macro- and nano-scale significantly reduced the availability of Mn, Fe and P in soils, this last more evident for the NPs treatments. Indeed, the soil bacterial diversity was reduced when the mixture of anatase and rutile were spiked in the biosolid-amended soil at high concentration. Moreover, the pea plants from treated soils showed an imbalance in the mineral nutrition, with reduction in the plant tissues of Mn and K and increase of N. This study pose a reflection on the use of biosolid, which could act as a vehicle for the spread and accumulation of ENPs in agro-ecosystems

    Two further patients with Warsaw breakage syndrome. Is a mild phenotype possible?

    Get PDF
    Background: Warsaw Breakage Syndrome (WABS) is an ultra rare cohesinopathy caused by biallelic mutation of DDX11 gene. It is clinically characterized by pre and postnatal growth delay, microcephaly, hearing loss with cochlear hypoplasia, skin color abnormalities, and dysmorphisms. Methods: Mutational screening and functional analyses (protein expression and 3D-modeling) were performed in order to investigate the presence and pathogenicity of DDX11 variant identified in our patients. Results: We report the clinical history of two sisters affected by WABS with a pathological mytomicin C test carrying compound heterozygous mutations (c.2507T > C / c.907_920del) of the DDX11 gene. The pathogenicity of this variant was confirmed in the light of a bioinformatic study and protein three-dimensional modeling, as well as expression analysis. Conclusion: These findings further extend the clinical and molecular knowledge about the WABS showing a possible mild phenotype without major malformations or intellectual disability
    • …
    corecore