910 research outputs found

    Line emission from gamma-ray burst environments

    Get PDF
    The time and angle dependent line and continuum emission from a dense torus around a cosmological gamma-ray burst source is simulated, taking into account photoionization, collisional ionization, recombination, and electron heating and cooling due to various processes. The importance of the hydrodynamical interaction between the torus and the expanding blast wave is stressed. Due to the rapid deceleration of the blast wave as it interacts with the dense torus, the material in the torus will be illuminated by a drastically different photon spectrum than observable through a low-column-density line of sight, and will be heated by the hydrodynamical interaction between the blast wave and the torus. A model calculation to reproduce the Fe K-alpha line emission observed in the X-ray afterglow of GRB 970508 is presented. The results indicate that ~ 10^{-4} solar masses of iron must be concentrated in a region of less than 10^{-3} pc. The illumination of the torus material due to the hydrodynamic interaction of the blast wave with the torus is the dominant heating and ionization mechanism leading to the formation of the iron line. These results suggest that misaligned GRBs may be detectable as X-ray flashes with pronounced iron emission line features.Comment: Accepted for publication in ApJ. Updated recombination rate data; discussion on element abundances added; references update

    Spherical magnetic nanoparticles: magnetic structure and interparticle interaction

    Full text link
    The interaction between spherical magnetic nanoparticles is investigated from micromagnetic simulations and ananlysed in terms of the leading dipolar interaction energy between magnetic dipoles. We focus mainly on the case where the particles present a vortex structure. In a first step the local magnetic structure in the isolated particle is revisited. For particles bearing a uniaxial magnetocrystaline anisotropy, it is shown that the vortex core orientation relative to the easy axis depends on both the particle size and the anisotropy constant. When the particles magnetization present a vortex structure, it is shown that the polarization of the particles by the dipolar field of the other one must be taken into account in the interaction. An analytic form is deduced for the interaction which involves the vortex core magnetization and the magnetic susceptibility which are obtained from the magnetic properties of the isolated particle.Comment: 20 pages, 10 figures Published in Journal of Applied Physics. To be found at: http://link.aip.org/link/?jap/105/07391

    Photon-Photon Absorption of Very High Energy Gamma-Rays from Microquasars: Application to LS 5039

    Full text link
    Very high energy (VHE) gamma-rays have recently been detected from the Galactic black-hole candidate and microquasar LS 5039. A plausible site for the production of these VHE gamma-rays is the region close to the mildly relativistic outflow. However, at distances comparable to the binary separation, the intense photon field of the stellar companion will lead to substantial gamma-gamma absorption of VHE gamma-rays. If the system is viewed at a substantial inclination (i > 0), this absorption feature will be modulated on the orbital period of the binary as a result of a phase-dependent stellar-radiation intensity and pair-production threshold. We apply our results to LS 5039 and find that (1) gamma-gamma absorption effects will be substantial if the photon production site is located at a distance from the central compact object of the order of the binary separation (~ 2.5e12 cm) or less; (2) the gamma-gamma absorption depth will be largest at a few hundred GeV, leading to a characteristic absorption trough; (3) the gamma-gamma absorption feature will be strongly modulated on the orbital period of the binary, characterized by a spectral hardening accompanying periodic dips of the VHE gamma-ray flux; and (4) gamma rays can escape virtually unabsorbed, even from within ~ 10^{12} cm, when the star is located behind the production site as seen by the observer.Comment: Submitted to ApJ Letters. AASTeX, 12 ms pages, including 4 eps figure

    Questions on uncertainties in parton distributions

    Get PDF
    A discussion is presented of the manner in which uncertainties in parton distributions and related quantities are determined. One of the central problems is the criteria used to judge what variation of the parameters describing a set of partons is acceptable within the context of a global fit. Various ways of addressing this question are outlined

    Polarizable molecular interactions in condensed phase and their equivalent nonpolarizable models

    Full text link
    Earlier, using phenomenological approach, we showed that in some cases polarizable models of condensed phase systems can be reduced to nonpolarizable equivalent models with scaled charges. Examples of such systems include ionic liquids, TIPnP-type models of water, protein force fields, and others, where interactions and dynamics of inherently polarizable species can be accurately described by nonpolarizable models. To describe electrostatic interactions, the effective charges of simple ionic liquids are obtained by scaling the actual charges of ions by a factor of 1/sqrt(eps_el), which is due to electronic polarization screening effect; the scaling factor of neutral species is more complicated. Here, using several theoretical models, we examine how exactly the scaling factors appear in theory, and how, and under what conditions, polarizable Hamiltonians are reduced to nonpolarizable ones. These models allow one to trace the origin of the scaling factors, determine their values, and obtain important insights on the nature of polarizable interactions in condensed matter systems.Comment: 43 pages, 3 figure

    Broadband Spectral Analysis of PKS 0528+134: A Report on Six Years of EGRET Observations

    Get PDF
    The multiwavelength spectra of PKS 0528+134 during six years of observations by EGRET have been analyzed using synchrotron self-Compton (SSC) and external radiation Compton (ERC) models. We find that a two-component model, in which the target photons are produced externally to the gamma-ray emitting region, but also including an SSC component, is required to suitably reproduce the spectral energy distributions of the source. Our analysis indicates that there is a trend in the observed properties of PKS 0528+134, as the source goes from a gamma-ray low state to a flaring state. We observe that during the higher gamma-ray states, the bulk Lorentz factor of the jet increases and the ERC component dominates the high-energy emission. Our model calculations indicate the trend that the energies of the electrons giving rise to the synchrotron peak decreases, and the power-ratio of the gamma-ray and low energy spectral components increases, as the source goes from a low to a high gamma-ray state.Comment: 36 pages, 13 figures, final version accepted for publication in ApJ; includes minor modification

    Gamma Rays from Compton Scattering in the Jets of Microquasars: Application to LS 5039

    Full text link
    Recent HESS observations show that microquasars in high-mass systems are sources of VHE gamma-rays. A leptonic jet model for microquasar gamma-ray emission is developed. Using the head-on approximation for the Compton cross section and taking into account angular effects from the star's orbital motion, we derive expressions to calculate the spectrum of gamma rays when nonthermal jet electrons Compton-scatter photons of the stellar radiation field. Calculations are presented for power-law distributions of nonthermal electrons that are assumed to be isotropically distributed in the comoving jet frame, and applied to Îł\gamma-ray observations of LS 5039. We conclude that (1) the TeV emission measured with HESS cannot result only from Compton-scattered stellar radiation (CSSR), but could be synchrotron self-Compton (SSC) emission or a combination of CSSR and SSC; (2) fitting both the HESS data and the EGRET data associated with LS 5039 requires a very improbable leptonic model with a very hard electron spectrum. Because the gamma rays would be variable in a leptonic jet model, the data sets are unlikely to be representative of a simultaneously measured gamma-ray spectrum. We therefore attribute EGRET gamma rays primarily to CSSR emission, and HESS gamma rays to SSC emission. Detection of periodic modulation of the TeV emission from LS 5039 would favor a leptonic SSC or cascade hadron origin of the emission in the inner jet, whereas stochastic variability alone would support a more extended leptonic model. The puzzle of the EGRET gamma rays from LS 5039 will be quickly solved with GLAST. (Abridged)Comment: 17 pages, 11 figures, ApJ, in press, June 1, 2006, corrected eq.

    Statistical Mechanics of Logarithmic REM: Duality, Freezing and Extreme Value Statistics of 1/f1/f Noises generated by Gaussian Free Fields

    Full text link
    We compute the distribution of the partition functions for a class of one-dimensional Random Energy Models (REM) with logarithmically correlated random potential, above and at the glass transition temperature. The random potential sequences represent various versions of the 1/f noise generated by sampling the two-dimensional Gaussian Free Field (2dGFF) along various planar curves. Our method extends the recent analysis of Fyodorov Bouchaud from the circular case to an interval and is based on an analytical continuation of the Selberg integral. In particular, we unveil a {\it duality relation} satisfied by the suitable generating function of free energy cumulants in the high-temperature phase. It reinforces the freezing scenario hypothesis for that generating function, from which we derive the distribution of extrema for the 2dGFF on the [0,1][0,1] interval. We provide numerical checks of the circular and the interval case and discuss universality and various extensions. Relevance to the distribution of length of a segment in Liouville quantum gravity is noted.Comment: 25 pages, 12 figures Published version. Misprint corrected, references and note adde

    Multiwavelength Observations of GX 339-4 in 1996. III. Keck Spectroscopy

    Full text link
    As part of our multiwavelength campaign of observations of GX 339-4 in 1996 we present our Keck spectroscopy performed on May 12 UT. At this time, neither the ASM on the RXTE nor BATSE on the CGRO detected the source. The optical emission was still dominated by the accretion disk with V approximately 17 mag. The dominant emission line is H alpha, and for the first time we are able to resolve a double peaked profile. The peak separation Delta v = 370 +/- 40 km/s. Double peaked H alpha emission lines have been seen in the quiescent optical counterparts of many black hole X-ray novae. However, we find that the peak separation is significantly smaller in GX 339-4, implying that the optical emission comes from a larger radius than in the novae. The H alpha emission line may be more akin to the one in Cygnus X-1, where it is very difficult to determine if the line is intrinsically double peaked because absorption and emission lines from the companion star dominate.Comment: Submitted to Astrophysical Journal. 10 pages. 2 figure

    Time-Dependent Synchrotron and Compton Spectra from Jets of Microquasars

    Full text link
    Jet models for the high-energy emission of Galactic X-ray binary sources have regained significant interest with detailed spectral and timing studies of the X-ray emission from microquasars, the recent detection by the HESS collaboration of very-high-energy gamma-rays from the microquasar LS~5039, and the earlier suggestion of jet models for ultraluminous X-ray sources observed in many nearby galaxies. Here we study the synchrotron and Compton signatures of time-dependent electron injection and acceleration, adiabatic and radiative cooling, and different jet geometries in the jets of Galactic microquasars. Synchrotron, synchrotron-self-Compton, and external-Compton radiation processes with soft photons provided by the companion star and the accretion disk are treated. An analytical solution is presented to the electron kinetic equation for general power-law geometries of the jets for Compton scattering in the Thomson regime. We pay particular attention to predictions concerning the rapid flux and spectral variability signatures expected in a variety of scenarios, making specific predictions concerning possible spectral hysteresis, similar to what has been observed in several TeV blazars. Such predictions should be testable with dedicated monitoring observations of Galactic microquasars and ultraluminous X-ray sources using Chandra and/or XMM-Newton.Comment: Accepted for publication in ApJ; 37 manuscript pages, including 10 eps figures; uses AASTeX macro
    • …
    corecore