research

Time-Dependent Synchrotron and Compton Spectra from Jets of Microquasars

Abstract

Jet models for the high-energy emission of Galactic X-ray binary sources have regained significant interest with detailed spectral and timing studies of the X-ray emission from microquasars, the recent detection by the HESS collaboration of very-high-energy gamma-rays from the microquasar LS~5039, and the earlier suggestion of jet models for ultraluminous X-ray sources observed in many nearby galaxies. Here we study the synchrotron and Compton signatures of time-dependent electron injection and acceleration, adiabatic and radiative cooling, and different jet geometries in the jets of Galactic microquasars. Synchrotron, synchrotron-self-Compton, and external-Compton radiation processes with soft photons provided by the companion star and the accretion disk are treated. An analytical solution is presented to the electron kinetic equation for general power-law geometries of the jets for Compton scattering in the Thomson regime. We pay particular attention to predictions concerning the rapid flux and spectral variability signatures expected in a variety of scenarios, making specific predictions concerning possible spectral hysteresis, similar to what has been observed in several TeV blazars. Such predictions should be testable with dedicated monitoring observations of Galactic microquasars and ultraluminous X-ray sources using Chandra and/or XMM-Newton.Comment: Accepted for publication in ApJ; 37 manuscript pages, including 10 eps figures; uses AASTeX macro

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 03/01/2020