1,458 research outputs found

    Spherical magnetic nanoparticles: magnetic structure and interparticle interaction

    Full text link
    The interaction between spherical magnetic nanoparticles is investigated from micromagnetic simulations and ananlysed in terms of the leading dipolar interaction energy between magnetic dipoles. We focus mainly on the case where the particles present a vortex structure. In a first step the local magnetic structure in the isolated particle is revisited. For particles bearing a uniaxial magnetocrystaline anisotropy, it is shown that the vortex core orientation relative to the easy axis depends on both the particle size and the anisotropy constant. When the particles magnetization present a vortex structure, it is shown that the polarization of the particles by the dipolar field of the other one must be taken into account in the interaction. An analytic form is deduced for the interaction which involves the vortex core magnetization and the magnetic susceptibility which are obtained from the magnetic properties of the isolated particle.Comment: 20 pages, 10 figures Published in Journal of Applied Physics. To be found at: http://link.aip.org/link/?jap/105/07391

    Crystal structure of Schmallenberg orthobunyavirus nucleoprotein-RNA complex reveals a novel RNA sequestration mechanism

    Get PDF
    Schmallenberg virus (SBV) is a newly emerged orthobunyavirus (family Bunyaviridae) that has caused severe disease in the offspring of farm animals across Europe. Like all orthobunyaviruses, SBV contains a tripartite negative-sense RNA genome that is encapsidated by the viral nucleocapsid (N) protein in the form of a ribonucleoprotein complex (RNP). We recently reported the three-dimensional structure of SBV N that revealed a novel fold. Here we report the crystal structure of the SBV N protein in complex with a 42-nt-long RNA to 2.16 Å resolution. The complex comprises a tetramer of N that encapsidates the RNA as a cross-shape inside the protein ring structure, with each protomer bound to 11 ribonucleotides. Eight bases are bound in the positively charged cleft between the N- and C-terminal domains of N, and three bases are shielded by the extended N-terminal arm. SBV N appears to sequester RNA using a different mechanism compared with the nucleoproteins of other negative-sense RNA viruses. Furthermore, the structure suggests that RNA binding results in conformational changes of some residues in the RNA-binding cleft and the N- and C-terminal arms. Our results provide new insights into the novel mechanism of RNA encapsidation by orthobunyaviruses

    Violent Hard X-ray Variability of Mrk 421 Observed by NuSTAR in 2013 April

    Full text link
    The well studied blazar Markarian 421 (Mrk 421, zz=0.031) was the subject of an intensive multi-wavelength campaign when it flared in 2013 April. The recorded X-ray and very high energy (VHE, E>>100 GeV) Îł\gamma-ray fluxes are the highest ever measured from this object. At the peak of the activity, it was monitored by the hard X-ray focusing telescope {\it Nuclear Spectroscopic Telescope Array} ({\it NuSTAR}) and {\it Swift} X-Ray Telescope (XRT). In this work, we present a detailed variability analysis of {\it NuSTAR} and {\it Swift}-XRT observations of Mrk 421 during this flaring episode. We obtained the shortest flux doubling time of 14.01±\pm5.03 minutes, which is the shortest hard X-ray (3−-79 keV) variability ever recorded from Mrk 421 and is on the order of the light crossing time of the black hole's event horizon. A pattern of extremely fast variability events superposed on slowly varying flares is found in most of the {\it NuSTAR} observations. We suggest that these peculiar variability patterns may be explained by magnetic energy dissipation and reconnection in a fast moving compact emission region within the jet. Based on the fast variability, we derive a lower limit on the magnetic field strength of B≄0.73ÎŽ1−2/3 Μ191/3B \ge 0.73 \delta_1^{-2/3} \, \nu_{19}^{1/3}~G, where ÎŽ1\delta_1 is the Doppler factor in units of 10, and Îœ19\nu_{19} is the characteristic X-ray synchrotron frequency in units of 101910^{19}~Hz.Comment: 23 pages, 5 figures, 2 tables, to appear in the Astrophysical Journa

    Field-induced structure transformation in electrorheological solids

    Full text link
    We have computed the local electric field in a body-centered tetragonal (BCT) lattice of point dipoles via the Ewald-Kornfeld formulation, in an attempt to examine the effects of a structure transformation on the local field strength. For the ground state of an electrorheological solid of hard spheres, we identified a novel structure transformation from the BCT to the face-centered cubic (FCC) lattices by changing the uniaxial lattice constant c under the hard sphere constraint. In contrast to the previous results, the local field exhibits a non-monotonic transition from BCT to FCC. As c increases from the BCT ground state, the local field initially decreases rapidly towards the isotropic value at the body-centered cubic lattice, decreases further, reaching a minimum value and increases, passing through the isotropic value again at an intermediate lattice, reaches a maximum value and finally decreases to the FCC value. An experimental realization of the structure transformation is suggested. Moreover, the change in the local field can lead to a generalized Clausius-Mossotti equation for the BCT lattices.Comment: Submitted to Phys. Rev.

    Analyzing the Multiwavelength Spectrum and Variability of BL Lacertae During the July 1997 Outburst

    Full text link
    The multiwavelength spectrum of BL Lacertae during its July 1997 outburst is analyzed in terms of different variations of the homogeneous leptonic jet model for the production of high-energy radiation from blazars. We find that a two-component gamma-ray spectrum, consisting of a synchrotron self-Compton and an external Compton component, is required in order to yield an acceptable fit to the broadband spectrum. Our analysis indicates that in BL Lac, unlike other BL Lac objects, the broad emission line region plays an important role for the high-energy emission. Several alternative blazar jet models are briefly discussed. In the appendix, we describe the formalism in which the process of Comptonization of reprocessed accretion disk photons is treated in the previously developed blazar jet simulation code which we use.Comment: Now accepted for publication in The Astronomical Journal. Significantly extended discussion w.r.t. original version. 3 Figures included using epsf.sty, rotate.st

    Comptonization signatures in the rapid aperiodic variability of Galactic black-hole candidates

    Get PDF
    We investigate the effect of inverse-Compton scattering of flares of soft radiation in different geometries of a hot, Comptonizing region and a colder accretion disk around a solar-mass black hole. The photon-energy dependent light curves, their Fourier transforms, power spectra and Fourier-period dependent time lags of hard photons with respect to softer photons are discussed. On the basis of a comparison with existing data we find arguments against Comptonization of external soft radiation as well as Comptonization in a homogeneous medium as dominant mechanisms for the rapid aperiodic variability in Galactic black-hole candidates. Possible further observational tests for the influence of Comptonization on the rapid aperiodic variability of Galactic black-hole candidates are suggested.Comment: 32 pages, including 10 figures and 2 tables; uses epsf.sty, rotate.sty; submitted to Ap

    Multiwavelength Observations of GX 339-4 in 1996. II. Rapid X-ray Variability

    Get PDF
    As part of our multiwavelength campaign of GX 339-4 observations in 1996 we present the rapid X-ray variability observed July 26 using the RXTE when the source was in a hard state (= soft X-ray low state). We found that the source was extremely variable, with many bright flares. The flares have relatively symmetric time profiles. There are a few time intervals where the flux rises steadily and then drops suddenly, sometimes to a level lower than the average before the increase. Hardness ratios showed that the source was slightly softer when the flux was brighter. The power density spectra (PDS) were also complicated and we found that broken power laws do not provide adequate fits to any of them. Instead a pair of zero-centered Lorentzians gives a good general description of the shape of the PDS. We found several quasi-periodic oscillations (QPO), including some that are harmonically spaced with the most stable frequency at 0.35 Hz. While the overall rms variability of the source was close to being constant throughout the observation (29% integrating between 0.01 and 50 Hz), there is a small but significant change in the PDS shape with time. More importantly, we show that the soft 2-5 keV band is more variable than the harder 5-10 and 10-40 keV bands, which is unusual for this source and for other black hole candidates. Cross correlation functions (CCF) between these bands show that the light curve for the 10-40 keV band lags that of the 2-5 keV band by 5 msec.Comment: Submitted to Astrophysical Journal. 20 pages. 8 figure

    Transformation Properties of External Radiation Fields, Energy-Loss Rates and Scattered Spectra, and a Model for Blazar Variability

    Get PDF
    We treat transformation properties of external radiation fields in the proper frame of a plasma moving with constant speed. The specific spectral energy densities of external isotropic and accretion-disk radiation fields are derived in the comoving frame of relativistic outflows, such as those thought to be found near black-hole jet and gamma-ray burst sources. Nonthermal electrons and positrons Compton-scatter this radiation field, and high-energy protons and ions interact with this field through photomeson and photopair production. We revisit the problem of the Compton-scattered spectrum associated with an external accretion-disk radiation field, and clarify a past treatment by the authors. Simple expressions for energy-loss rates and Thomson-scattered spectra are given for ambient soft photon fields consisting either of a surrounding external isotropic monochromatic radiation field, or of an azimuthally symmetric, geometrically thin accretion-disk radiation field. A model for blazar emission is presented that displays a characteristic spectral and variability behavior due to the presence of a direct accretion-disk component. The disk component and distinct flaring behavior can be bright enough to be detected from flat spectrum radio quasars with {\it GLAST}. Spectral states of blazars are characterized by the relative importance of the accretion-disk and scattered radiation fields and, in the extended jet, by the accretion disk, inner jet, and cosmic microwave background radiation fields.Comment: 43 pages, 12 figures, ApJ, in press; includes improvements in response to referee report, added references, section of detectability with GLAS

    Effects of geometric anisotropy on local field distribution: Ewald-Kornfeld formulation

    Full text link
    We have applied the Ewald-Kornfeld formulation to a tetragonal lattice of point dipoles, in an attempt to examine the effects of geometric anisotropy on the local field distribution. The various problems encountered in the computation of the conditionally convergent summation of the near field are addressed and the methods of overcoming them are discussed. The results show that the geometric anisotropy has a significant impact on the local field distribution. The change in the local field can lead to a generalized Clausius-Mossotti equation for the anisotropic case.Comment: Accepted for publications, Journal of Physics: Condensed Matte
    • 

    corecore