1,458 research outputs found
Spherical magnetic nanoparticles: magnetic structure and interparticle interaction
The interaction between spherical magnetic nanoparticles is investigated from
micromagnetic simulations and ananlysed in terms of the leading dipolar
interaction energy between magnetic dipoles. We focus mainly on the case where
the particles present a vortex structure. In a first step the local magnetic
structure in the isolated particle is revisited. For particles bearing a
uniaxial magnetocrystaline anisotropy, it is shown that the vortex core
orientation relative to the easy axis depends on both the particle size and the
anisotropy constant. When the particles magnetization present a vortex
structure, it is shown that the polarization of the particles by the dipolar
field of the other one must be taken into account in the interaction. An
analytic form is deduced for the interaction which involves the vortex core
magnetization and the magnetic susceptibility which are obtained from the
magnetic properties of the isolated particle.Comment: 20 pages, 10 figures Published in Journal of Applied Physics. To be
found at: http://link.aip.org/link/?jap/105/07391
Crystal structure of Schmallenberg orthobunyavirus nucleoprotein-RNA complex reveals a novel RNA sequestration mechanism
Schmallenberg virus (SBV) is a newly emerged orthobunyavirus (family Bunyaviridae) that has caused severe disease in the offspring of farm animals across Europe. Like all orthobunyaviruses, SBV contains a tripartite negative-sense RNA genome that is encapsidated by the viral nucleocapsid (N) protein in the form of a ribonucleoprotein complex (RNP). We recently reported the three-dimensional structure of SBV N that revealed a novel fold. Here we report the crystal structure of the SBV N protein in complex with a 42-nt-long RNA to 2.16 Ă
resolution. The complex comprises a tetramer of N that encapsidates the RNA as a cross-shape inside the protein ring structure, with each protomer bound to 11 ribonucleotides. Eight bases are bound in the positively charged cleft between the N- and C-terminal domains of N, and three bases are shielded by the extended N-terminal arm. SBV N appears to sequester RNA using a different mechanism compared with the nucleoproteins of other negative-sense RNA viruses. Furthermore, the structure suggests that RNA binding results in conformational changes of some residues in the RNA-binding cleft and the N- and C-terminal arms. Our results provide new insights into the novel mechanism of RNA encapsidation by orthobunyaviruses
Violent Hard X-ray Variability of Mrk 421 Observed by NuSTAR in 2013 April
The well studied blazar Markarian 421 (Mrk 421, =0.031) was the subject of
an intensive multi-wavelength campaign when it flared in 2013 April. The
recorded X-ray and very high energy (VHE, E100 GeV) -ray fluxes are
the highest ever measured from this object. At the peak of the activity, it was
monitored by the hard X-ray focusing telescope {\it Nuclear Spectroscopic
Telescope Array} ({\it NuSTAR}) and {\it Swift} X-Ray Telescope (XRT). In this
work, we present a detailed variability analysis of {\it NuSTAR} and {\it
Swift}-XRT observations of Mrk 421 during this flaring episode. We obtained the
shortest flux doubling time of 14.015.03 minutes, which is the shortest
hard X-ray (379 keV) variability ever recorded from Mrk 421 and is on the
order of the light crossing time of the black hole's event horizon. A pattern
of extremely fast variability events superposed on slowly varying flares is
found in most of the {\it NuSTAR} observations. We suggest that these peculiar
variability patterns may be explained by magnetic energy dissipation and
reconnection in a fast moving compact emission region within the jet. Based on
the fast variability, we derive a lower limit on the magnetic field strength of
~G, where is the
Doppler factor in units of 10, and is the characteristic X-ray
synchrotron frequency in units of ~Hz.Comment: 23 pages, 5 figures, 2 tables, to appear in the Astrophysical Journa
Field-induced structure transformation in electrorheological solids
We have computed the local electric field in a body-centered tetragonal (BCT)
lattice of point dipoles via the Ewald-Kornfeld formulation, in an attempt to
examine the effects of a structure transformation on the local field strength.
For the ground state of an electrorheological solid of hard spheres, we
identified a novel structure transformation from the BCT to the face-centered
cubic (FCC) lattices by changing the uniaxial lattice constant c under the hard
sphere constraint. In contrast to the previous results, the local field
exhibits a non-monotonic transition from BCT to FCC. As c increases from the
BCT ground state, the local field initially decreases rapidly towards the
isotropic value at the body-centered cubic lattice, decreases further, reaching
a minimum value and increases, passing through the isotropic value again at an
intermediate lattice, reaches a maximum value and finally decreases to the FCC
value. An experimental realization of the structure transformation is
suggested. Moreover, the change in the local field can lead to a generalized
Clausius-Mossotti equation for the BCT lattices.Comment: Submitted to Phys. Rev.
Analyzing the Multiwavelength Spectrum and Variability of BL Lacertae During the July 1997 Outburst
The multiwavelength spectrum of BL Lacertae during its July 1997 outburst is
analyzed in terms of different variations of the homogeneous leptonic jet model
for the production of high-energy radiation from blazars. We find that a
two-component gamma-ray spectrum, consisting of a synchrotron self-Compton and
an external Compton component, is required in order to yield an acceptable fit
to the broadband spectrum. Our analysis indicates that in BL Lac, unlike other
BL Lac objects, the broad emission line region plays an important role for the
high-energy emission. Several alternative blazar jet models are briefly
discussed. In the appendix, we describe the formalism in which the process of
Comptonization of reprocessed accretion disk photons is treated in the
previously developed blazar jet simulation code which we use.Comment: Now accepted for publication in The Astronomical Journal.
Significantly extended discussion w.r.t. original version. 3 Figures included
using epsf.sty, rotate.st
Comptonization signatures in the rapid aperiodic variability of Galactic black-hole candidates
We investigate the effect of inverse-Compton scattering of flares of soft
radiation in different geometries of a hot, Comptonizing region and a colder
accretion disk around a solar-mass black hole. The photon-energy dependent
light curves, their Fourier transforms, power spectra and Fourier-period
dependent time lags of hard photons with respect to softer photons are
discussed. On the basis of a comparison with existing data we find arguments
against Comptonization of external soft radiation as well as Comptonization in
a homogeneous medium as dominant mechanisms for the rapid aperiodic variability
in Galactic black-hole candidates. Possible further observational tests for the
influence of Comptonization on the rapid aperiodic variability of Galactic
black-hole candidates are suggested.Comment: 32 pages, including 10 figures and 2 tables; uses epsf.sty,
rotate.sty; submitted to Ap
Multiwavelength Observations of GX 339-4 in 1996. II. Rapid X-ray Variability
As part of our multiwavelength campaign of GX 339-4 observations in 1996 we
present the rapid X-ray variability observed July 26 using the RXTE when the
source was in a hard state (= soft X-ray low state). We found that the source
was extremely variable, with many bright flares. The flares have relatively
symmetric time profiles. There are a few time intervals where the flux rises
steadily and then drops suddenly, sometimes to a level lower than the average
before the increase. Hardness ratios showed that the source was slightly softer
when the flux was brighter. The power density spectra (PDS) were also
complicated and we found that broken power laws do not provide adequate fits to
any of them. Instead a pair of zero-centered Lorentzians gives a good general
description of the shape of the PDS. We found several quasi-periodic
oscillations (QPO), including some that are harmonically spaced with the most
stable frequency at 0.35 Hz. While the overall rms variability of the source
was close to being constant throughout the observation (29% integrating between
0.01 and 50 Hz), there is a small but significant change in the PDS shape with
time. More importantly, we show that the soft 2-5 keV band is more variable
than the harder 5-10 and 10-40 keV bands, which is unusual for this source and
for other black hole candidates. Cross correlation functions (CCF) between
these bands show that the light curve for the 10-40 keV band lags that of the
2-5 keV band by 5 msec.Comment: Submitted to Astrophysical Journal. 20 pages. 8 figure
Transformation Properties of External Radiation Fields, Energy-Loss Rates and Scattered Spectra, and a Model for Blazar Variability
We treat transformation properties of external radiation fields in the proper
frame of a plasma moving with constant speed. The specific spectral energy
densities of external isotropic and accretion-disk radiation fields are derived
in the comoving frame of relativistic outflows, such as those thought to be
found near black-hole jet and gamma-ray burst sources. Nonthermal electrons and
positrons Compton-scatter this radiation field, and high-energy protons and
ions interact with this field through photomeson and photopair production. We
revisit the problem of the Compton-scattered spectrum associated with an
external accretion-disk radiation field, and clarify a past treatment by the
authors. Simple expressions for energy-loss rates and Thomson-scattered spectra
are given for ambient soft photon fields consisting either of a surrounding
external isotropic monochromatic radiation field, or of an azimuthally
symmetric, geometrically thin accretion-disk radiation field. A model for
blazar emission is presented that displays a characteristic spectral and
variability behavior due to the presence of a direct accretion-disk component.
The disk component and distinct flaring behavior can be bright enough to be
detected from flat spectrum radio quasars with {\it GLAST}. Spectral states of
blazars are characterized by the relative importance of the accretion-disk and
scattered radiation fields and, in the extended jet, by the accretion disk,
inner jet, and cosmic microwave background radiation fields.Comment: 43 pages, 12 figures, ApJ, in press; includes improvements in
response to referee report, added references, section of detectability with
GLAS
Effects of geometric anisotropy on local field distribution: Ewald-Kornfeld formulation
We have applied the Ewald-Kornfeld formulation to a tetragonal lattice of
point dipoles, in an attempt to examine the effects of geometric anisotropy on
the local field distribution. The various problems encountered in the
computation of the conditionally convergent summation of the near field are
addressed and the methods of overcoming them are discussed. The results show
that the geometric anisotropy has a significant impact on the local field
distribution. The change in the local field can lead to a generalized
Clausius-Mossotti equation for the anisotropic case.Comment: Accepted for publications, Journal of Physics: Condensed Matte
- âŠ