10 research outputs found

    The Formin-Homology Protein SmDia Interacts with the Src Kinase SmTK and the GTPase SmRho1 in the Gonads of Schistosoma mansoni

    Get PDF
    BACKGROUND:Schistosomiasis (bilharzia) is a parasitic disease of worldwide significance affecting human and animals. As schistosome eggs are responsible for pathogenesis, the understanding of processes controlling gonad development might open new perspectives for intervention. The Src-like tyrosine-kinase SmTK3 of Schistosoma mansoni is expressed in the gonads, and its pharmacological inhibition reduces mitogenic activity and egg production in paired females in vitro. Since Src kinases are important signal transduction proteins it is of interest to unravel the signaling cascades SmTK3 is involved in to understand its cellular role in the gonads. METHODOLOGY AND RESULTS:Towards this end we established and screened a yeast two-hybrid (Y2H) cDNA library of adult S. mansoni with a bait construct encoding the SH3 (src homology) domain and unique site of SmTK3. Among the binding partners found was a diaphanous homolog (SmDia), which was characterized further. SmDia is a single-copy gene transcribed throughout development with a bias towards male transcription. Its deduced amino acid sequence reveals all diaphanous-characteristic functional domains. Binding studies with truncated SmDia clones identified SmTK3 interaction sites demonstrating that maximal binding efficiency depends on the N-terminal part of the FH1 (formin homology) domain and the inter-domain region of SmDia located upstream of FH1 in combination with the unique site and the SH3 domain of SmTK3, respectively. SmDia also directly interacted with the GTPase SmRho1 of S. mansoni. In situ hybridization experiments finally demonstrated that SmDia, SmRho1, and SmTK3 are transcribed in the gonads of both genders. CONCLUSION:These data provide first evidence for the existence of two cooperating pathways involving Rho and Src that bridge at SmDia probably organizing cytoskeletal events in the reproductive organs of a parasite, and beyond that in gonads of eukaryotes. Furthermore, the FH1 and inter domain region of SmDia have been discovered as binding sites for the SH3 and unique site domains of SmTK3, respectively

    A Novel Mouse Model of <i>Schistosoma haematobium</i> Egg-Induced Immunopathology

    Get PDF
    <div><p><i>Schistosoma haematobium</i> is the etiologic agent for urogenital schistosomiasis, a major source of morbidity and mortality for more than 112 million people worldwide. Infection with <i>S. haematobium</i> results in a variety of immunopathologic sequelae caused by parasite oviposition within the urinary tract, which drives inflammation, hematuria, fibrosis, bladder dysfunction, and increased susceptibility to urothelial carcinoma. While humans readily develop urogenital schistosomiasis, the lack of an experimentally-tractable model has greatly impaired our understanding of the mechanisms that underlie this important disease. We have developed an improved mouse model of <i>S. haematobium</i> urinary tract infection that recapitulates several aspects of human urogenital schistosomiasis. Following microinjection of purified <i>S. haematobium</i> eggs into the bladder wall, mice consistently develop macrophage-rich granulomata that persist for at least 3 months and pass eggs in their urine. Importantly, egg-injected mice also develop urinary tract fibrosis, bladder dysfunction, and various urothelial changes morphologically reminiscent of human urogenital schistosomiasis. As expected, <i>S. haematobium</i> egg-induced immune responses in the immediate microenvironment, draining lymph nodes, and systemic circulation are associated with a Type 2-dominant inflammatory response, characterized by high levels of interleukin-4, eosinophils, and IgE. Taken together, our novel mouse model may help facilitate a better understanding of the unique pathophysiological mechanisms of epithelial dysfunction, tissue fibrosis, and oncogenesis associated with urogenital schistosomiasis.</p></div

    Prediabetes and associated disorders

    No full text
    corecore