34 research outputs found

    Computational Complexity of the Interleaving Distance

    Full text link
    The interleaving distance is arguably the most prominent distance measure in topological data analysis. In this paper, we provide bounds on the computational complexity of determining the interleaving distance in several settings. We show that the interleaving distance is NP-hard to compute for persistence modules valued in the category of vector spaces. In the specific setting of multidimensional persistent homology we show that the problem is at least as hard as a matrix invertibility problem. Furthermore, this allows us to conclude that the interleaving distance of interval decomposable modules depends on the characteristic of the field. Persistence modules valued in the category of sets are also studied. As a corollary, we obtain that the isomorphism problem for Reeb graphs is graph isomorphism complete.Comment: Discussion related to the characteristic of the field added. Paper accepted to the 34th International Symposium on Computational Geometr

    Approximating Persistent Homology in Euclidean Space Through Collapses

    Full text link
    The \v{C}ech complex is one of the most widely used tools in applied algebraic topology. Unfortunately, due to the inclusive nature of the \v{C}ech filtration, the number of simplices grows exponentially in the number of input points. A practical consequence is that computations may have to terminate at smaller scales than what the application calls for. In this paper we propose two methods to approximate the \v{C}ech persistence module. Both are constructed on the level of spaces, i.e. as sequences of simplicial complexes induced by nerves. We also show how the bottleneck distance between such persistence modules can be understood by how tightly they are sandwiched on the level of spaces. In turn, this implies the correctness of our approximation methods. Finally, we implement our methods and apply them to some example point clouds in Euclidean space

    Computational Complexity of the Interleaving Distance

    Get PDF
    The interleaving distance is arguably the most prominent distance measure in topological data analysis. In this paper, we provide bounds on the computational complexity of determining the interleaving distance in several settings. We show that the interleaving distance is NP-hard to compute for persistence modules valued in the category of vector spaces. In the specific setting of multidimensional persistent homology we show that the problem is at least as hard as a matrix invertibility problem. Furthermore, this allows us to conclude that the interleaving distance of interval decomposable modules depends on the characteristic of the field. Persistence modules valued in the category of sets are also studied. As a corollary, we obtain that the isomorphism problem for Reeb graphs is graph isomorphism complete

    Computing the interleaving distance is NP-hard

    Full text link
    We show that computing the interleaving distance between two multi-graded persistence modules is NP-hard. More precisely, we show that deciding whether two modules are 11-interleaved is NP-complete, already for bigraded, interval decomposable modules. Our proof is based on previous work showing that a constrained matrix invertibility problem can be reduced to the interleaving distance computation of a special type of persistence modules. We show that this matrix invertibility problem is NP-complete. We also give a slight improvement of the above reduction, showing that also the approximation of the interleaving distance is NP-hard for any approximation factor smaller than 33. Additionally, we obtain corresponding hardness results for the case that the modules are indecomposable, and in the setting of one-sided stability. Furthermore, we show that checking for injections (resp. surjections) between persistence modules is NP-hard. In conjunction with earlier results from computational algebra this gives a complete characterization of the computational complexity of one-sided stability. Lastly, we show that it is in general NP-hard to approximate distances induced by noise systems within a factor of 2.Comment: 25 pages. Several expository improvements and minor corrections. Also added a section on noise system

    Computing pp-presentation distances is hard

    Full text link
    Recently, pp-presentation distances for p∈[1,∞]p\in [1,\infty] were introduced for merge trees and multiparameter persistence modules as more sensitive variations of the respective interleaving distances (p=∞p=\infty). It is well-known that computing the interleaving distance is NP-hard in both cases. We extend this result by showing that computing the pp-presentation distance is NP-hard for all p∈[1,∞)p\in [1,\infty) for both merge trees and tt-parameter persistence modules for any t≥2t\geq 2. Though the details differ, both proofs follow the same novel strategy, suggesting that our approach can be adapted to proving the NP-hardness of other distances based on sums or pp-norms.Comment: 28 pages, 7 figure

    On Rectangle-Decomposable 2-Parameter Persistence Modules

    Get PDF
    corecore