80 research outputs found
Qualitative behavior of a higher-order fuzzy difference equation
MakaleWOS:000956767600002In this paper, we investigate the qualitative behavior of the fuzzy difference equation
zn +1 = Azn-s/B + C Pi(s)(i=0) z(n-i)
where n is an element of N-0 = N boolean OR{0},(z(n)) is a sequence of positive fuzzy numbers, A; B; C and the initial conditions z j; j = 0; 1, ..., s are positive fuzzy numbers and s is a positive integer. Moreover, two examples are given to verify the e ffectiveness of the results obtained
On the Ulam-Hyers-Rassias stability of two structures of discrete fractional three-point boundary value problems: existence theory
We prove existence and uniqueness of solutions to discrete fractional equations that involve Riemann-Liouville and Caputo fractional derivatives with three-point boundary conditions. The results are obtained by conducting an analysis via the Banach principle and the Brouwer fixed point criterion. Moreover, we prove stability, including Hyers-Ulam and Hyers-Ulam-Rassias type results. Finally, some numerical models are provided to illustrate and validate the theoretical results.The Portuguese Foundation for Science and Technology (FCT) and CIDMA. NSRF via the Program Management Unit for Human Resources & Institutional Development, Research and Innovation.publishe
Finite-time decentralized event-triggered feedback control for generalized neural networks with mixed interval time-varying delays and cyber-attacks
This article investigates the finite-time decentralized event-triggered feedback control problem for generalized neural networks (GNNs) with mixed interval time-varying delays and cyber-attacks. A decentralized event-triggered method reduces the network transmission load and decides whether sensor measurements should be sent out. The cyber-attacks that occur at random are described employing Bernoulli distributed variables. By the Lyapunov-Krasovskii stability theory, we apply an integral inequality with an exponential function to estimate the derivative of the Lyapunov-Krasovskii functionals (LKFs). We present new sufficient conditions in the form of linear matrix inequalities. The main objective of this research is to investigate the stochastic finite-time boundedness of GNNs with mixed interval time-varying delays and cyber-attacks by providing a decentralized event-triggered method and feedback controller. Finally, a numerical example is constructed to demonstrate the effectiveness and advantages of the provided control scheme
Jensen, Ostrowski and Hermite-Hadamard type inequalities for h-convex stochastic processes by means of center-radius order relation
Please read abstract in the article.Prince Sattam bin Abdulaziz University.http://www.aimspress.com/journal/MathMathematics and Applied Mathematic
A study on controllability for Hilfer fractional differential equations with impulsive delay conditions
This article focuses on the controllability of a Hilfer fractional impulsive differential equation with indefinite delay. We analyze our major outcomes using fractional calculus, the measure of non-compactness and a fixed-point approach. Finally, an example is provided to show the theory
Study on the oscillation of solution to second-order impulsive systems
In the present article, we set the if and only if conditions for the solutions of the class of neutral impulsive delay second-order differential equations. We consider two cases when it is non-increasing and non-decreasing for quotient of two positive odd integers. Our main tool is the Lebesgue's dominated convergence theorem. Examples illustrating the applicability of the results are also given, and state an open problem
Study of nonlinear thermal convection of ternary nanofluid within Darcy-Brinkman porous structure with time dependent heat source/sink
The dynamical behaviour and thermal transportation feature of mixed convective Casson bi-phasic flows of water-based ternary Hybrid nanofluids with different shapes are examined numerically in a Darcy- Brinkman medium bounded by a vertical elongating slender concave-shaped surface. The mathematical framework of the present flow model is developed properly by adopting the single-phase approach, whose solid phase is selected to be metallic or metallic oxide nanoparticles. Besides, the influence of thermal radiation is taken into consideration in the presence of an internal variable heat generation. A set of feasible similarity transformations are applied for the conversion of the governing PDEs into a nonlinear differential structure of coupled ODEs. An advanced differential quadrature algorithm is employed herein to acquire accurate numerical solutions for momentum and energy equations. Results of the conducted parametric study are explained and revealed in graphs using bvp5c in MATLAB to solve the governing system. The solution with three mixture compositions is provided (Type-I and Type-II). Al2O3 (Platelet), GNT (Cylindrical), and CNTs (Spherical), Type-II mixture of copper (Cylindrical), silver (Platelet), and copper oxide (Spherical). In comparison to Type-I ternary combination Type-II ternary mixtures is lesser in terms of the temperature distribution. The skin friction coefficient is more in Type-1 compared to Type-2
Weighted Ostrowski type inequalities via Montgomery identity involving double integrals on time scales
In this paper, the Montgomery identity is generalized for double integrals on time scales by employing a novel analytical approach to develop the generalized Ostrowski type integral inequalities involving double integrals. Some inimitable cases are discussed for different parameters and parametric functions. Moreover, applications to some particular time scales are also presented
Lime peel extract induced NiFe2O4 NPs: Synthesis to applications and oxidative stress mechanism for anticancer, antibiotic activity
Nanobiotechnology, joined with green science, has incredible potential for the advancement of novel and important products that benefit human health, climate, and industries. Green chemistry of materials from synthesis to diverse biomedical applications is a talk of town in today's sustainable ideal world. Green synthesized nickel ferrites nanoparticles via biogenic lime peel extract (LPE) are investigated with precision and complete trail has been reported as multiple efficacies. The fcc crystal structure with the crystallite size (31 nm) were accessed by the XRD, magnetic properties using VSM, and FTIR for the functional group analysis of NiFe2O4 nanoparticles mediated by Lime peel extract (NiFe2O4@LPE NPs). From TEM and SEM analysis the average diameter of the NPs was observed in the range of 31-35 nm. In 3D view, the surface morphology was analyzed by the AFM. NiFe2O4@LPE NPs were used to assess cytotoxicity and cellular morphological alterations in In Vitro cervical cancerous cells (HeLa). Nanosized NiFe2O4@LPE accompanied the considerable NPs topology induced dose dependent MMP in HeLa cells unlike the previous interpretation of controlled metabolism anticancer activity for HeLa cancerous cells. Therefore, it is referred by oxidative stress and reduction phenomena for anticancer effects and inactivation of carcinogen. Moreover, Antioxidant DPPH radical scavenging method and antibacterial Bacillus subtilis, Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus activity were observed in the synthesized nickel ferrites NPs. (c) 2022 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).</p
- …