230 research outputs found

    Endothelial HO-1 induction by model TG-rich lipoproteins is regulated through a NOX4-Nrf2 pathway

    Get PDF
    Circulating levels of chylomicron remnants (CMRs) increase postprandially and their composition directly reflects dietary lipid intake. These TG-rich lipoproteins likely contribute to the development of endothelial dysfunction, albeit via unknown mechanisms. Here, we investigated how the FA composition of CMRs influences their actions on human aortic endothelial cells (HAECs) by comparing the effects of model CMRs—artificial TG-rich CMR-like particles (A-CRLPs)—containing TGs extracted from fish, DHA-rich algal, corn, or palm oils. HAECs responded with distinct transcriptional programs according to A-CRLP TG content and oxidation status, with genes involved in antioxidant defense and cytoprotection most prominently affected by n-3 PUFA-containing A-CRLPs. These particles were significantly more efficacious inducers of heme oxygenase-1 (HO-1) than n-6 PUFA corn or saturated FA-rich palm CRLPs. Mechanistically, HO-1 induction by all CRLPs requires NADPH oxidase 4, with PUFA-containing particles additionally dependent upon mitochondrial reactive oxygen species. Activation of both p38 MAPK and PPARβ/δ culminates in increased nuclear factor erythroid 2-related factor 2 (Nrf2) expression/nuclear translocation and HO-1 induction. These studies define new molecular pathways coupling endothelial cell activation by model CMRs with adaptive regulation of Nrf2-dependent HO-1 expression and may represent key mechanisms through which dietary FAs differentially impact progression of endothelial dysfunction

    High-fat meals rich in EPA plus DHA compared with DHA only have differential effects on postprandial lipemia and plasma 8-isoprostane F-2 alpha concentrations relative to a control high-oleic acid meal: a randomized controlled trial

    Get PDF
    Background: Eicosapentaenoic acid (EPA) plus docosahexaenoic acid (DHA) supplementation has beneficial cardiovascular effects, but postprandial influences of these individual fatty acids are unclear. Objectives: The primary objective was to determine the vascular effects of EPA + DHA compared with DHA only during postprandial lipemia relative to control high–oleic acid meals; the secondary objective was to characterize the effects of linoleic acid–enriched high-fat meals relative to the control meal. Design: We conducted a randomized, controlled, double-blind crossover trial of 4 high-fat (75-g) meals containing 1) high–oleic acid sunflower oil (HOS; control), 2) HOS + fish oil (FO; 5 g EPA and DHA), 3) HOS + algal oil (AO; 5 g DHA), and 4) high–linoleic acid sunflower oil (HLS) in 16 healthy men (aged 35–70 y) with higher than optimal fasting triacylglycerol concentrations (mean ± SD triacylglycerol, 1.9 ± 0.5 mmol/L). Results: Elevations in triacylglycerol concentration relative to baseline were slightly reduced after FO and HLS compared with the HOS control (P < 0.05). The characteristic decrease from baseline in plasma nonesterified fatty acids after a mixed meal was inhibited after AO (Δ 0–3 h, P < 0.05). HLS increased the augmentation index compared with the other test meals (P < 0.05), although the digital volume pulse–reflection index was not significantly different. Plasma 8-isoprostane F(2α) analysis revealed opposing effects of FO (increased) and AO (reduced) compared with the control (P < 0.05). No differences in nitric oxide metabolites were observed. Conclusions: These data show differential postprandial 8-isoprostane F(2α) responses to high-fat meals containing EPA + DHA–rich fish oil compared with DHA-rich AO, but these differences were not associated with consistent effects on postprandial vascular function or lipemia. More detailed analyses of polyunsaturated fatty acid–derived lipid mediators are required to determine possible divergent functional effects of single meals rich in either DHA or EPA. This trial was registered at clinicaltrials.gov as NCT01618071

    Abundance changes and habitat availability drive species’ responses to climate change

    Get PDF
    There is little consensus as to why there is so much variation in the rates at which different species’ geographic ranges expand in response to climate warming[1,2]. Here, we show for British butterfly species that the relative importance of species’ abundance trends and habitat availability vary over time. Species with high habitat availability expanded more rapidly from the 1970s to mid-1990s, when abundances were generally stable, whereas habitat availability effects were confined to the subset of species with stable abundances from the mid-1990s to 2009, when abundance trends were generally declining. This suggests that stable (or positive) abundance trends are a prerequisite for range expansion. Given that species’ abundance trends vary over time[3] for non-climatic as well as climatic reasons, assessment of abundance trends will help improve predictions of species’ responses to climate change, and help understand the likely success of different conservation strategies for facilitating their expansions

    Understanding Postprandial Inflammation and Its Relationship to Lifestyle Behaviour and Metabolic Diseases

    Get PDF
    Postprandial hyperlipidemia with accumulation of remnant lipoproteins is a common metabolic disturbance associated with atherosclerosis and vascular dysfunction, particularly during chronic disease states such as obesity, the metabolic syndrome and, diabetes. Remnant lipoproteins become attached to the vascular wall, where they can penetrate intact endothelium causing foam cell formation. Postprandial remnant lipoproteins can activate circulating leukocytes, upregulate the expression of endothelial adhesion molecules, facilitate adhesion and migration of inflammatory cells into the subendothelial space, and activate the complement system. Since humans are postprandial most of the day, the continuous generation of remnants after each meal may be one of the triggers for the development of atherosclerosis. Modulation of postprandial lipemia by lifestyle changes and pharmacological interventions could result in a further decrease of cardiovascular mortality and morbidity. This paper will provide an update on current concepts concerning the relationship between postprandial lipemia, inflammation, vascular function, and therapeutic options

    Environment and Rural Affairs Monitoring & Modelling Programme - ERAMMP Report-30: Analysis of National Monitoring Data in Wales for the State of Natural Resources Report 2020

    Get PDF
    The Glastir Monitoring and Evaluation Programme (GMEP, https://gmep.wales/) was at the forefront of the ecosystem approach to monitoring the impact of Pillar II schemes across the European Union - as recognised by the European Commission’s Monitoring and Evaluation Help Desk. GMEP also recruited a large sample of counterfactual “wider Wales” sites, thus enabling additional all Wales reporting. GMEP and other assimilated data represents a significant source of robust, timely and spatially relevant evidence which can contribute to SoNaRR. To facilitate use of GMEP data in SoNaRR, we present new analyses of national monitoring data which has been co-developed with SoNaRR technical leads at Natural Resources Wales (NRW)

    Pharmacokinetic, neurochemical, stereological and neuropathological studies on the potential effects of paraquat in the substantia nigra pars compacta and striatum of male C57BL/6J mice

    Get PDF
    AbstractThe pharmacokinetics and neurotoxicity of paraquat dichloride (PQ) were assessed following once weekly administration to C57BL/6J male mice by intraperitoneal injection for 1, 2 or 3 weeks at doses of 10, 15 or 25mg/kg/week. Approximately 0.3% of the administered dose was taken up by the brain and was slowly eliminated, with a half-life of approximately 3 weeks. PQ did not alter the concentration of dopamine (DA), homovanillic acid (HVA) or 3,4-dihydroxyphenylacetic acid (DOPAC), or increase dopamine turnover in the striatum. There was inconsistent stereological evidence of a loss of DA neurons, as identified by chromogenic or fluorescent-tagged antibodies to tyrosine hydroxylase in the substantia nigra pars compacta (SNpc). There was no evidence that PQ induced neuronal degeneration in the SNpc or degenerating neuronal processes in the striatum, as indicated by the absence of uptake of silver stain or reduced immunolabeling of tyrosine-hydroxylase-positive (TH+) neurons. There was no evidence of apoptotic cell death, which was evaluated using TUNEL or caspase 3 assays. Microglia (IBA-1 immunoreactivity) and astrocytes (GFAP immunoreactivity) were not activated in PQ-treated mice 4, 8, 16, 24, 48, 96 or 168h after 1, 2 or 3 doses of PQ.In contrast, mice dosed with the positive control substance, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP; 10mg/kg/dose×4 doses, 2h apart), displayed significantly reduced DA and DOPAC concentrations and increased DA turnover in the striatum 7 days after dosing. The number of TH+ neurons in the SNpc was reduced, and there were increased numbers of degenerating neurons and neuronal processes in the SNpc and striatum. MPTP-mediated cell death was not attributed to apoptosis. MPTP activated microglia and astrocytes within 4h of the last dose, reaching a peak within 48h. The microglial response ended by 96h in the SNpc, but the astrocytic response continued through 168h in the striatum.These results bring into question previous published stereological studies that report loss of TH+ neurons in the SNpc of PQ-treated mice. This study also suggests that even if the reduction in TH+ neurons reported by others occurs in PQ-treated mice, this apparent phenotypic change is unaccompanied by neuronal cell death or by modification of dopamine levels in the striatum

    A Small Molecule that Induces Intrinsic Pathway Apoptosis with Unparalleled Speed

    Get PDF
    Apoptosis is generally believed to be a process thatrequires several hours, in contrast to non-programmed forms of cell death that can occur in minutes. Our findings challenge the time-consuming nature of apoptosis as we describe the discovery and characterization of a small molecule, named Raptinal, which initiates intrinsic pathway caspase-dependent apoptosis within minutes in multiple cell lines. Comparison to a mechanistically diverse panel of apoptotic stimuli reveals that Raptinal-induced apoptosis proceeds with unparalleled speed. The rapid phenotype enabled identification of the criticalroles of mitochondrial voltage-dependent anion channel function, mitochondrial membrane potential/coupled respiration, and mitochondrial complex I, III, and IV function for apoptosis induction. Use of Raptinal in whole organisms demonstrates its utility for studying apoptosis invivo for a variety of applications. Overall, rapid inducers of apoptosis are powerful tools that will be used in a variety of settings to generate further insight into the apoptotic machinery. Palchaudhuri etal. describe the discovery of a small molecule called "Raptinal" that induces unusually rapid apoptotic cell death via the intrinsic pathway. Their work describes the utility of Raptinal as a tool for apoptosis induction relative to other available small molecules

    Analysis of health concerns not addressed by REACH for low tonnage chemicals and opportunities for new approach methodology

    Get PDF
    In Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) the criterion for deciding the studies that must be performed is the annual tonnage of the chemical manufactured or imported into the EU. The annual tonnage may be considered as a surrogate for levels of human exposure but this does not take into account the physico-chemical properties and use patterns that determine exposure. Chemicals are classified using data from REACH under areas of health concern covering effects on the skin and eye; sensitisation; acute, repeated and prolonged systemic exposure; effects on genetic material; carcinogenicity; and reproduction and development. We analysed the mandated study lists under REACH for each annual tonnage band in terms of the information they provide on each of the areas of health concern. Using the European Chemicals Agency (ECHA) REACH Registration data base of over 20,000 registered substances, we found that only 19% of registered substances have datasets on all areas of health concern. Information limited to acute exposure, sensitisation and genotoxicity was found for 62%. The analysis highlighted the shortfall of information mandated for substances in the lower tonnage bands. Deploying New Approach Methodologies (NAMs) at this lower tonnage band to assess health concerns which are currently not covered by REACH, such as repeat and extended exposure and carcinogenicity, would provide additional information and would be a way for registrants and regulators to gain experience in the use of NAMs. There are currently projects in Europe aiming to develop NAM-based assessment frameworks and they could find their first use in assessing low tonnage chemicals once confidence has been gained by their evaluation with data rich chemicals
    corecore