58 research outputs found

    Are neonicotinoid insecticides driving declines of widespread butterflies?

    Get PDF
    There has been widespread concern that neonicotinoid pesticides may be adversely impacting wild and managed bees for some years, but recently attention has shifted to examining broader effects they may be having on biodiversity. For example in the Netherlands, declines in insectivorous birds are positively associated with levels of neonicotinoid pollution in surface water. In England, the total abundance of widespread butterfly species declined by 58% on farmed land between 2000 and 2009 despite both a doubling in conservation spending in the UK, and predictions that climate change should benefit most species. Here we build models of the UK population indices from 1985 to 2012 for 17 widespread butterfly species that commonly occur at farmland sites. Of the factors we tested, three correlated significantly with butterfly populations. Summer temperature and the index for a species the previous year are both positively associated with butterfly indices. By contrast, the number of hectares of farmland where neonicotinoid pesticides are used is negatively associated with butterfly indices. Indices for 15 of the 17 species show negative associations with neonicotinoid usage. The declines in butterflies have largely occurred in England, where neonicotinoid usage is at its highest. In Scotland, where neonicotinoid usage is comparatively low, butterfly numbers are stable. Further research is needed urgently to show whether there is a causal link between neonicotinoid usage and the decline of widespread butterflies or whether it simply represents a proxy for other environmental factors associated with intensive agriculture

    The importance of unique populations for conservation: the case of the Great Orme’s Head grayling butterfly Hipparchia semele (Linnaeus, 1758) (Lepidoptera: Satyrinae)

    Get PDF
    Small populations with unusual characteristics subject to extreme conditions provide opportunities for exploring adaptability in the face of environmental changes. Two sets of data have been examined to determine how unusual is the population of Hipparchia semele on the Great Orme’s Head, North Wales, compared with other sites in the UK. The population on the Great Orme is shown to have unique features, including significantly reduced wing expanse and wing ocellation and extreme flight period characteristics. Analyses of flight period data from the UK Butterfly Monitoring Scheme (UKBMS) using over a 100 sites reveals that, although the Great Orme population is one of a number of sites from the Channel Islands to northern Scotland with an early mean flight period, it has by far the earliest flight period and longest flight period of all populations—the latter raising the mean flight period date. Furthermore the unique characteristics of H. semele on the Orme may well be underestimated, inasmuch as sampling of individuals for the phenotype study is incomplete, including only the area along the North Wales coast into Cheshire, while the UKBMS transect is restricted to the south-west portion of the headland. Unique populations are often accorded focused conservation effort; especially potential flagship species in decline as in the case of British H. semele. As the Great Orme population presents a rare opportunity for studying adaptations in an extreme local environment, particularly considering current projections for climate changes, we advocate further research and attention being given to this unusual population

    Grazing reduces bee abundance and diversity in saltmarshes by suppressing flowering of key plant species

    Get PDF
    Global declines in pollinator populations and associated services make it imperative to identify and sensitively manage valuable habitats. Coastal habitats such as saltmarshes can support extensive flowering meadows, but their importance for pollinators, and how this varies with land-use intensity, is poorly understood. We hypothesised that saltmarshes provide important bee foraging habitat, and that livestock grazing either suppresses or enhances its value by reducing the abundance - or increasing the diversity - of flowering plants. To test these hypotheses, we surveyed 11 saltmarshes in Wales (UK) under varying grazing management (long-term ungrazed, extensively grazed, intensively grazed) over three summers and investigated causal pathways linking grazing intensity with bee abundance and diversity using a series of linear mixed models. We also compared observed bee abundances to 11 common terrestrial habitats using national survey data. Grazing reduced bee abundance and richness via reductions in the flower cover of the two key food plants: sea aster Tripolium pannonicum and sea lavender Limonium spp. Grazing also increased flowering plant richness, but the positive effects of flower richness did not compensate for the negative effects of reduced flower cover on bees. Bee abundances were approximately halved in extensively grazed marshes (relative to ungrazed) and halved again in intensively grazed marshes. Saltmarsh flowers were primarily visited by honeybees Apis mellifera and bumblebees Bombus spp. in mid and late summer. Compared to other broad habitat types in Wales, ungrazed saltmarshes ranked highly for honeybees and bumblebees in July-August, but were relatively unimportant for solitary bees. Intensively grazed saltmarshes were amongst the least valuable habitats for all bee types. Under appropriate grazing management, saltmarshes provide a valuable and previously overlooked foraging habitat for bees. The strong effects of livestock grazing identified here are likely to extend geographically given that both livestock grazing and key grazing-sensitive plants are widespread in European saltmarshes. We recommend that long-term ungrazed saltmarshes are protected from grazing, and that grazing is maintained at extensive levels on grazed marshes. In this way, saltmarshes can provide forage for wild and managed bee populations and support ecosystem services

    Grizzled skippers stuck in the south: population‐level responses of an early‐successional specialist butterfly to climate across its UK range over 40 years

    Get PDF
    Aim: Climate change has been predicted to facilitate poleward expansion of many early‐successional specialist invertebrates. The Grizzled Skipper, Pyrgus malvae, is a threatened butterfly in long‐term decline that has not met expectations of northern expansion in Britain, possibly indicating that climate change has not improved northern habitat suitability or that another driver (e.g. land use change) is masking its effects. Here, we explore the effect of climate on population size trends over four decades, and whether any regions show an improving population trend that may be a precursor to northern expansion. Examining detailed spatio‐temporal abundance data can reveal unexpected limitations to population growth that would not be detectable in widely used climate envelope models. Location: Central and southern England. Methods: Mixed models were used to investigate P. malvae population size in relation to time and monthly climate measures across its UK range since 1976, based on repeated transect walks. Results: We found that P. malvae population size declined more over time in the north and west of its UK range than in the south and east, and was negatively related to high December temperature and summer rainfall. However, the effect sizes of temperature and rainfall were minimal. Main Conclusions: The last 40 years of climate change have not ameliorated climate suitability for P. malvae at its range edge, contrary to expectations from spatial‐only climate envelope models. The clear long‐term downward trends in population size are independent of climate change and we propose probably due to habitat deterioration. Our findings highlight potential hazards in predicting species range expansions from spatial models alone. Although some climate variables may be associated with a species’ distribution, other factors may be more dominant drivers of trends and therefore more useful predictors of range changes

    Citizen science and invasive alien species: predicting the detection of the oak processionary moth Thaumetopoea processionea by moth recorders

    Get PDF
    Invasive alien species, including pests and diseases of plants and animals, are a major cause of biodiversity change and may impact upon human well-being and the economy. If new, potentially invasive, taxa arrive then it is most cost-effective to respond as early in their establishment as possible. Information to support this can be gained from volunteers, i.e. via citizen science. However, it is vital to develop ways of quantifying volunteer recorder effort to assess its contribution to the detection of rare events, such as the arrival of invasive alien species. We considered the potential to detect adult oak processionary moths (Thaumetopoea processionea) by amateur naturalists recording moths at light traps. We calculated detection rates from the Netherlands, where T. processionea is widely established and poses a risk to tree health and human health, and applied these to the spatial pattern of moth recording effort in the UK. The probability of recording T. processionea in the Netherlands varied across provinces from 0.05–2.4% per species of macro-moth recorded on a list of species (so equalling 1–52% for a list of 30 species). Applying these rates to the pattern of moth recording in the UK: T. processionea could be detected (detection > 0%), if it were present, in 69% and 4.7% of 10 km and 1 km squares, respectively. However, in most squares detection probability is low ( 10%). Our study provides a means to objectively assess the use of citizen science as a monitoring tool in the detection of rare events, e.g. the arrival of invasive alien species, occurrence of rare species and natural colonisation

    Little and late: how reduced hedgerow cutting can benefit Lepidoptera

    Get PDF
    Hedgerows are a key semi-natural habitat for biodiversity in intensive agricultural landscapes across northern Europe and support a large invertebrate fauna. Management can have large effects on the value of hedgerows as a wildlife habitat, thus sensitive management is incentivised through agri-environment schemes (AES). We tested how current and potential future AES hedge management regimes affected the diversity and abundance of Lepidoptera species that utilise the hedge as a breeding resource, using a long term, multi-site, manipulative field experiment. Hedgerow management in some current AES options (reduced trimming frequency and cutting in winter) increased Lepidoptera abundance and the diversity of components of the Lepidoptera community linked with specific lifecycle traits. However, the most frequently applied hedgerow AES option currently applied in the UK (cutting once every 2 years in autumn) did not benefit Lepidoptera compared to standard hedgerow management outside AES (annual trimming in autumn). Decreasing the intensity of hedgerow trimming improves the diversity of the whole Lepidoptera assemblage, and should be considered as part of biodiversity conservation in farmed landscapes

    The sensitivity of breeding songbirds to changes in seasonal timing is linked to population change but cannot be directly attributed to the effects of trophic asynchrony on productivity

    Get PDF
    A consequence of climate change has been an advance in the timing of seasonal events. Differences in the rate of advance between trophic levels may result in predators becoming mismatched with prey availability, reducing fitness and potentially driving population declines. Such “trophic asynchrony” is hypothesized to have contributed to recent population declines of long-distance migratory birds in particular. Using spatially extensive survey data from 1983 to 2010 to estimate variation in spring phenology from 280 plant and insect species and the egg-laying phenology of 21 British songbird species, we explored the effects of trophic asynchrony on avian population trends and potential underlying demographic mechanisms. Species which advanced their laying dates least over the last three decades, and were therefore at greatest risk of asynchrony, exhibited the most negative population trends. We expressed asynchrony as the annual variation in bird phenology relative to spring phenology, and related asynchrony to annual avian productivity. In warmer springs, birds were more asynchronous, but productivity was only marginally reduced; long-distance migrants, short-distance migrants and resident bird species all exhibited effects of similar magnitude. Long-term population, but not productivity, declines were greatest among those species whose annual productivity was most greatly reduced by asynchrony. This suggests that population change is not mechanistically driven by the negative effects of asynchrony on productivity. The apparent effects of asynchrony on population trends are therefore either more likely to be strongly expressed via other demographic pathways, or alternatively, are a surrogate for species' sensitivity to other environmental pressures which are the ultimate cause of decline

    Spatial and habitat variation in aphid, butterfly, moth and bird phenologies over the last half century

    Get PDF
    Global warming has advanced the timing of biological events, potentially leading to disruption across trophic levels. The potential importance of phenological change as a driver of population trends has been suggested. To fully understand the possible impacts, there is a need to quantify the scale of these changes spatially and according to habitat type. We studied the relationship between phenological trends, space and habitat type between 1965 and 2012 using an extensive UK dataset comprising 269 aphid, bird, butterfly and moth species. We modelled phenologies using generalized additive mixed models that included covariates for geographical (latitude, longitude, altitude), temporal (year, season) and habitat terms (woodland, scrub, grassland). Model selection showed that a baseline model with geographical and temporal components explained the variation in phenologies better than either a model in which space and time interacted or a habitat model without spatial terms. This baseline model showed strongly that phenologies shifted progressively earlier over time, that increasing altitude produced later phenologies and that a strong spatial component determined phenological timings, particularly latitude. The seasonal timing of a phenological event, in terms of whether it fell in the first or second half of the year, did not result in substantially different trends for butterflies. For moths, early season phenologies advanced more rapidly than those recorded later. Whilst temporal trends across all habitats resulted in earlier phenologies over time, agricultural habitats produced significantly later phenologies than most other habitats studied, probably because of nonclimatic drivers. A model with a significant habitat‐time interaction was the best‐fitting model for birds, moths and butterflies, emphasizing that the rates of phenological advance also differ among habitats for these groups. Our results suggest the presence of strong spatial gradients in mean seasonal timing and nonlinear trends towards earlier seasonal timing that varies in form and rate among habitat types
    corecore