12 research outputs found

    Performance of different three-dimensional scaffolds for in vivo endochondral bone generation

    Get PDF
    Contains fulltext : 136497.pdf (publisher's version ) (Open Access)In the context of skeletal tissue development and repair, endochondral ossification has inspired a new approach to regenerate bone tissue in vivo using a cartilage intermediate as an osteoinductive template. The aim of this study was to investigate the behavior of mesenchymal stem cells (MSCs) in regard to in vitro cartilage formation and in vivo bone regeneration when combined with different three-dimensional (3D) scaffold materials, i.e., hydroxyapatite/tricalcium phosphate (HA/TCP) composite block, polyurethane (PU) foam, poly(lactic-co-glycolic acid)/poly(epsilon-caprolactone) electrospun fibers (PLGA/PCL) and collagen I gel. To this end, rat MSCs were seeded on these scaffolds and chondrogenically differentiated in vitro for 4 weeks followed by in vivo subcutaneous implantation for 8 weeks. Nonetheless, the quality and maturity of in vivo ectopic bone formation appeared to be scaffold/material-dependent. Eight weeks of implantation was not sufficient to ossify the entire PLGA/PCL constructs, albeit a comprehensive remodeling of the cartilage had occurred. For HA/TCP, PU and collagen I scaffolds, more mature bone formation with rich vascularity and marrow stroma development could be observed. These data suggest that chondrogenic priming of MSCs in the presence of different scaffold materials allows the establishment of reliable templates for generating functional endochondral bone tissue in vivo without using osteoinductive growth factors. The morphology and maturity of bone formation

    Decrease in peak heart rate with acute hypoxia in relation to sea level VO2 max

    No full text
    Recapitulation of endochondral ossification leads to a new concept of bone tissue engineering via a cartilage intermediate as an osteoinductive template. In this study, we aimed to investigate the influence of in vitro chondrogenic priming time for the creation of cartilage template on the in vivo endochondral bone formation both qualitatively and quantitatively. To this end, rat bone-marrow-derived mesenchymal stromal cells (MSCs) were seeded onto two scaffolds with distinguished features: a fibrous poly(lactic-co-glycolic acid)/poly(epsilon-caprolactone) electrospun scaffold (PLGA/PCL) and a porous hydroxyapatite/tricalcium phosphate composite (HA/TCP). The constructs were then chondrogenically differentiated for 2, 3 and 4 weeks in vitro, followed by subcutaneous implantation in vivo for up to 8 weeks. A longer chondrogenic priming time resulted in a significantly increased amount and homogeneous deposition of the cartilage matrix on both the PLGA/PCL and HA/TCP scaffolds in vitro. In vivo, all implanted constructs gave rise to endochondral bone formation, whereas the bone volume was not affected by the length of priming time. An unpolarized woven bone-like structure, with significant amounts of cartilage remaining, was generated in fibrous PLGA/PCL scaffolds, while porous HA/TCP scaffolds supported progressive lamellar-like bone formation with mature bone marrow development. These data suggest that, by utilizing a chondrogenically differentiated MSC-scaffold construct as cartilage template, 2 weeks of in vitro priming time is sufficient to generate a substantial amount of vascularized endochondral bone in vivo. The structure of the bone depends on the chemical and structural cues provided by the scaffold design
    corecore