2,511 research outputs found

    Hydrogen contamination in Ge-doped SiO[sub 2] thin films prepared by helicon activated reactive evaporation

    Get PDF
    Germanium-doped silicon oxidethin films were deposited at low temperature by using an improved helicon plasma assisted reactive evaporation technique. The origins of hydrogen contamination in the film were investigated, and were found to be H incorporation during deposition and postdeposition water absorption. The H incorporation during deposition was avoided by using an effective method to eliminate the residual hydrogen present in the depositionsystem. The microstructure, chemical bonds, chemical etch rate, and optical index of the films were studied as a function of the deposition conditions. Granular microstructures were observed in low-density films, and were found to be the cause of postdeposition water absorption. The granular microstructure was eliminated and the film was densified by increasing the helicon plasma power and substrate bias during deposition. A high-density film was shown to have no postdeposition water absorption and no OH detected by using a Fourier-transform infrared spectrometer

    Identification of a non-mammalian leptin-like gene:characterization and expression in the tiger salamander (Ambystoma tigrinum)

    Get PDF
    Leptin is well established as a multifunctional cytokine in mammals. However, little is known about the evolution of the leptin gene in other vertebrates. A recently published set of ESTs from the tiger salamander (Ambystoma tigrinum) contains a sequence sharing 56% nucleotide sequence identity with the human leptin cDNA. To confirm that the EST is naturally expressed in the salamander, a 409 bp cDNA was amplified by RT-PCR of salamander testis and stomach mRNAs. The coding sequence of the cDNA is predicted to encode 169 amino acids, and the mature peptide to consist of 146 residues, as in mammals. Although the overall amino acid identity with mammalian leptins is only 29%, the salamander and mammalian peptides share common structural features. An intron was identified between coding exons providing evidence that the sequence is present in the salamander genome. Phylogenetic analysis showed a rate of molecular divergence consistent with the accepted view of vertebrate evolution. The pattern of tissue expression of the leptin-like cDNA differed between metamorphosed adult individuals of different sizes suggesting possible developmental regulation. Expression was most prominent in the skin and testis, but was also detected in tissues in which leptin mRNA is present in mammals, including the fat body, stomach, and muscle. The characterization of a salamander leptin-like gene provides a basis for understanding how the structure and functions of leptin have altered during the evolution of tetrapod vertebrates

    Ion beam formation in a low-pressure geometrically expanding argon plasma

    No full text
    Supersonic ion beam formation has been observed in a geometrically expanding low-pressure inductively coupled argon plasma. It is found that the ion beam is only observed below 3mTorr and only when the discharge is operated in inductive mode. The geometrical expansion of the plasma induces density and potential gradients leading to the ion beam formation. The ion beam energy increases with decreasing source tube radius. The results show that ion beam formation can be achieved by geometrical expansion alone and that the ion beam energy depends on the ratio of the cross-sectional area of the source and expansion region

    Spatial evolution of an ion beam created by a geometrically expanding low-pressure argon plasma

    No full text
    The spatial distribution of an ion beam—created at the interface of a small diameter plasma source and much larger diameter diffusion chamber—is studied in a low-pressure inductively coupled plasma using a retarding field energy analyzer. It is found that the ion beam density decays axially and radially in the diffusion chamber following the expansion of the plasma from the source region. The radial distribution of the ion beam indicates that the acceleration region has a convex shape and is located just outside the source exit, giving rise to a hemispherical plasma expansion into the diffusion chamber

    Bulletin No. 238 - Lamb-Fattening Experiments in Utah

    Get PDF
    This bulletin includes the results of Station Project 99-Fattening Lambs in Winter Drylot-which was begun at Monroe on November 15, 1928, and at Delta on November 13, 1929. The experiment was conducted for a period of four years at Monroe and for one year at Delta. Messers Alma and Milton Magelby of Monroe were closely associated with the Monroe experiment, furnishing the yards and the lambs as well as the feed used; the Monroe Lamb-feeders Association also cooperated in conducting this experiment. During the period that the Delta test was under way, Mr. J. F. Roe furnished the yards, the necessary lambs, and the feed supplies. Members of the Animal Husbandry Section of the Utah Agricultural Experiment Station have assisted in planning the experimental feeding work and have analyzed the results of the experiments

    Formation of spatially periodic fronts of high-energy electrons in a radio-frequency driven surface microdischarge

    No full text
    The generation of spatially periodic fronts of high-energy electrons (>13.48 eV) has been investigated in a radio-frequency surface microdischarge in atmospheric-pressure argon. Optical emission spectroscopy is used to study the Ar I 2p1−1s2 transition surrounding a filamentary microdischarge, both spatially and with respect to the phase of the applied voltage. The formation of excitation fronts, which remain at a constant propagation distance throughout the RF cycle and for the duration of the pulse, may be explained by a localized increase in the electric field at the tip of surface-charge layers that are deposited during the extension phase

    Nanosecond optical imaging spectroscopy of an electrothermal radiofrequency plasma thruster plume

    No full text
    Nanosecond optical imaging spectroscopy is employed to investigate the spatio-temporal dynamics of the plasma plume expanding from a 4.2 mm-diameter, 20 mm-long cylindrical capacitively coupled electrothermal radiofrequency (rf) driven thruster using 10 W of power at 12.50 MHz and an argon pressure of 1.5 Torr. On-axis, the plume exhibits four distinct peaks of optical emission intensity within the rf period. The plume has a spherical shape with a transient radial extension (during half of the rf cycle) at the thruster exit plane due to an rf current to ground when the grounded electrode acts as an anode

    Orbit Selection for the Proposed Lynx Observatory Mission

    Get PDF
    The Advanced Concepts Office design team performed several analyses and trades in support of orbit selection for the proposed Lynx mission, an x-ray observatory being submitted to the Astro2020 Decadal Survey. Though the descriptions in this Technical Memorandum (TM) focus on the Lynx mission, the approach and process for selecting the final orbit is applicable to a variety of proposed science and exploration missions. To select the best orbit for the Lynx science, mission designers assembled a team of subsystem and discipline experts, in addition to mission analysts, to evaluate several candidate orbits. These discipline experts included members of the science and instrument team, power and avionics, thermal, propulsion, and environments. The goal was to clearly show the benefits and weaknesses of each orbit in the trade space and provide sound justification for the final selection. Discipline experts conducted trades and evaluated the results using a variety of methods including engineering judgement, rough estimates, and detailed calculations, and rolled the results into a final grade using a weighted grading method. The orbit options could then be ranked. The principal investigator (PI) for the mission, along with the science team, was given the task of final orbit selection. The result of the trades indicated that a halo orbit about the second Sun-Earth Lagrange point (SE-L2), similar to the planned orbit for the James Webb Space Telescope (JWST), was the best choice for the Lynx mission. Details of how the team arrived at this selection are below
    • …
    corecore