37 research outputs found
Coordinated Rearrangements between Cytoplasmic and Periplasmic Domains of the Membrane Protein Complex ExbB-ExbD of Escherichia coli
SummaryGram-negative bacteria rely on the ExbB-ExbD-TonB system for the import of essential nutrients. Despite decades of research, the stoichiometry, subunit organization, and mechanism of action of the membrane proteins of the Ton system remain unclear. We copurified ExbB with ExbD as an ∼240 kDa protein-detergent complex, measured by light scattering and by native gels. Quantitative Coomassie staining revealed a stoichiometry of ExbB4-ExbD2. Negative stain electron microscopy and 2D analysis showed particles of ∼10 nm diameter in multiple structural states. Nanogold labeling identified the position of the ExbD periplasmic domain. Random conical tilt was used to reconstruct the particles in three structural states followed by sorting of the single particles and refinement of each state. The different states are interpreted by coordinated structural rearrangements between the cytoplasmic domain and the periplasmic domain, concordant with in vivo predictions
Structural basis for anthrax toxin receptor 1 recognition by Seneca Valley Virus
Recently, the use of oncolytic viruses in cancer therapy has become a realistic therapeutic option. Seneca Valley Virus (SVV) is a newly discovered picornavirus, which has earned a significant reputation as a potent oncolytic agent. Anthrax toxin receptor 1 (ANTXR1), one of the cellular receptors for the protective antigen secreted by Bacillus anthracis, has been identified as the high-affinity cellular receptor for SVV. Here, we report the structure of the SVV-ANTXR1 complex determined by single-particle cryo-electron microscopy analysis at near-atomic resolution. This is an example of a shared receptor structure between a mammalian virus and a bacterial toxin. Our structure shows that ANTXR1 decorates the outer surface of the SVV capsid and interacts with the surface-exposed BC loop and loop II of VP1, "the puff" of VP2 and "the knob" of VP3. Comparison of the receptor-bound capsid structure with the native capsid structure reveals that receptor binding induces minor conformational changes in SVV capsid structure, suggesting the role of ANTXR1 as an attachment receptor. Furthermore, our results demonstrate that the capsid footprint on the receptor is not conserved in anthrax toxin receptor 2 (ANTXR2), thereby providing a molecular mechanism for explaining the exquisite selectivity of SVV for ANTXR1
Recommended from our members
RsmA, RsmC and FlhDC regulate sdhEygfX in Serratia
SdhE is required for the flavinylation and activation of succinate dehydrogenase and fumarate reductase (FRD). In addition, SdhE is conserved in proteobacteria (α, β and γ) and eukaryotes. Although the function of this recently characterized family of proteins has been determined, almost nothing is known about how their genes are regulated. Here, the RsmA (CsrA) and RsmC (HexY) post-transcriptional and post-translational regulators have been identified and shown to repress sdhEygfX expression in Serratia sp. ATCC 39006. Conversely, the flagella master regulator complex, FlhDC, activated sdhEygfX transcription. To investigate the hierarchy of control, we developed a novel approach that utilized endogenous CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR associated) genome-editing by a type I-F system to generate a chromosomal point mutation in flhC. Mutation of flhC alleviated the ability of RsmC to repress sdhEygfX expression, whereas RsmA acted in both an FlhDC-dependent and -independent manner to inhibit sdhEygfX. Mutation of rsmA or rsmC, or overexpression of FlhDC, led to increased prodigiosin, biosurfactant, swimming and swarming. Consistent with the modulation of sdhE by motility regulators, we have demonstrated that SdhE and FRD are required for maximal flagella-dependent swimming. Together, these results demonstrate that regulators of both metabolism and motility (RsmA, RsmC and FlhDC) control the transcription of the sdhEygfX operon.This work was supported by the Marsden Fund, Royal Society of New Zealand (RSNZ) to PCF and a Strategic Grant from the Otago School of Medical Sciences (OSMS) to MB. HGH was supported by a University of Otago Doctoral Scholarship, MBM by a Division of Health Sciences Career Development Post-doctoral Fellowship, BN by a Dean's Prestigious Summer Scholarship from the OSMS and PCF was supported by a Rutherford Discovery Fellowship (RSNZ). NRW and GPCS were supported by Biotechnology and Biological Sciences Research Council (BBSRC), UK awards to the GPCS laboratory. We thank members of the Fineran and Cook laboratories for helpful discussions, Tim Blower for plasmid pTRB32 and for critically reading the manuscript.This is the final version of the article. It first appeared from the Microbiology Society via http://dx.doi.org/10.1099/mic.0.00028
Visualizing Nudivirus Assembly and Egress
Enveloped viruses hijack cellular membranes in order to provide the necessary material for virion assembly. In particular, viruses that replicate and assemble inside the nucleus have developed special approaches to modify the nuclear landscape for their advantage. We used electron microscopy to investigate cellular changes occurring during nudivirus infection and we characterized a unique mechanism for assembly, packaging, and transport of new virions across the nuclear membrane and through the cytoplasm. Our three-dimensional reconstructions describe the complex remodeling of the nuclear membrane necessary to release vesicle-associated viruses into the cytoplasm. This is the first report of nuclear morphological reconfigurations that occur during nudiviral infection
N-Linked Glycosylation on Anthrax Toxin Receptor 1 Is Essential for Seneca Valley Virus Infection
Seneca Valley virus (SVV) is a picornavirus with potency in selectively infecting and lysing cancerous cells. The cellular receptor for SVV mediating the selective tropism for tumors is anthrax toxin receptor 1 (ANTXR1), a type I transmembrane protein expressed in tumors. Similar to other mammalian receptors, ANTXR1 has been shown to harbor N-linked glycosylation sites in its extracellular vWA domain. However, the exact role of ANTXR1 glycosylation on SVV attachment and cellular entry was unknown. Here we show that N-linked glycosylation in the ANTXR1 vWA domain is necessary for SVV attachment and entry. In our study, tandem mass spectrometry analysis of recombinant ANTXR1-Fc revealed the presence of complex glycans at N166, N184 in the vWA domain, and N81 in the Fc domain. Symmetry-expanded cryo-EM reconstruction of SVV-ANTXR1-Fc further validated the presence of N166 and N184 in the vWA domain. Cell blocking, co-immunoprecipitation, and plaque formation assays confirmed that deglycosylation of ANTXR1 prevents SVV attachment and subsequent entry. Overall, our results identified N-glycosylation in ANTXR1 as a necessary post-translational modification for establishing stable interactions with SVV. We anticipate our findings will aid in selecting patients for future cancer therapeutics, where screening for both ANTXR1 and its glycosylation could lead to an improved outcome from SVV therapy
Genome, proteome and structure of a T7-like bacteriophage of the kiwifruit canker phytopathogen pseudomonas syringae pv. actinidiae
La pseudomonas syringae pv. actinidiae es un patógeno responsable significativo de la afta bacteriana severa del kiwi (Actinidia sp.). Los bacteriófagos infectados de este fitopatógeno tienen potencial como agentes de control biológico como parte de un enfoque integrado de la gestión del cancro bacteriano, y para su uso como herramientas molecular para el estudio de esta bacteria. Una variedad de bacteriófagos fueron previamente aislados, antes de ser infectados con P. syringae pv. Actinidiae; y sus propiedades básicas fueron caracterizadas para proporcionar un marco para la formulación de estos fagos, como agentes de biocontrol. Aquí, hemos examinado con más detalle el φPsa17, un fago con la capacidad de infectar a una amplia gama de cepas P. syringae pv. Actinidiae, único miembro de la Podoviridae en esta colección. La morfología de partículas fue visualizada mediante criomicroscopía electrónica, el genoma fue secuenciado, y sus proteínas estructurales fueron analizados usando shotgun proteomics. Estos estudios demostraron que 40,525 φPsa17 tiene un genoma de BP, es un miembro de género T7likevirus y está estrechamente relacionada con la pseudomonada llamada fágicas φPSA2 y GH-1. Once proteínas estructurales (andamios) fueron detectados por la proteómica y φPsa17 tiene una cápside de aproximadamente 60 nm de diámetro. No fueron identificados genes indicativos de un ciclo de vida lisogénica, sugiriendo que el fago es necesariamente lítico. Estas características indican que φPsa17 pueden ser adecuadas para la formulación como un agente de biocontrol de P. syringae pv. actinidiaePseudomonas syringae pv. actinidiae is an economically significant pathogen responsible for severe bacterial canker of kiwifruit (Actinidia sp.). Bacteriophages infecting this phytopathogen have potential as biocontrol agents as part of an integrated approach to the management of bacterial canker, and for use as molecular tools to study this bacterium. A variety of bacteriophages were previously isolated that infect P. syringae pv. actinidiae, and their basic properties were characterized to provide a framework for formulation of these phages as biocontrol agents. Here, we have examined in more detail φPsa17, a phage with the capacity to infect a broad range of P. syringae pv. actinidiae strains and the only member of the Podoviridae in this collection. Particle morphology was visualized using cryo-electron microscopy, the genome was sequenced, and its structural proteins were analysed using shotgun proteomics. These studies demonstrated that φPsa17 has a 40,525 bp genome, is a member of the T7likevirus genus and is closely related to the pseudomonad phages φPSA2 and gh-1. Eleven structural proteins (one scaffolding) were detected by proteomics and φPsa17 has a capsid of approximately 60 nm in diameter. No genes indicative of a lysogenic lifecycle were identified, suggesting the phage is obligately lytic. These features indicate that φPsa17 may be suitable for formulation as a biocontrol agent of P. syringae pv. actinidiaeTrabajo patrocinado por.
Royal Society. Fellowship Rutherford, para Peter C. Fineran
Otago School of Medical Sciences Summer Research Scholarship, para Danni ChenpeerReviewe
Monoclonal antibodies point to Achilles' heel in picornavirus capsid.
Picornaviruses are small, icosahedral, nonenveloped, positive-sense, single-stranded RNA viruses that form one of the largest and most important viral families. Numerous Picornaviridae members pose serious health or agricultural threats, causing diseases such as poliomyelitis, hepatitis A, or foot-and-mouth disease. The antigenic characterization of picornavirus capsids plays an important role in understanding the mechanism of viral neutralization and the conformational changes associated with genome release, and it can point to regions which can be targeted by small-molecule compounds to be developed as antiviral inhibitors. In a recent study, Cao and colleagues applied this strategy to hepatitis A virus (HAV) and used cryo-electron microscopy (cryo-EM) to characterize a well-conserved antigenic site recognized by several monoclonal antibodies. They further used computational approaches to identify a small-molecule drug with a strong inhibitory effect on cell attachment
Determination of the structure of complex I of Yarrowia lipolytica by single particle analysis
Komplex I enthält ein Flavinmononukleotid sowie mindestens acht Eisen- Schwefel Zentren als redoxaktive Cofaktoren. Da ein wesentlicher Teil des mitochondrialen Genoms für Untereinheiten von Komplex I codiert, betrifft eine Vielzahl von mitochondrialen Erkrankungen diesen Enzymkomplex.
Komplex I wurde bisher aus Mitochondrien, Chloroplasten und Bakterien isoliert. Die Minimalform von Komplex I wird in Bakterien gefunden, wo er aus 14 (bzw 13 im Falle einer Genfusion) Untereinheiten besteht und eine Masse von etwa 550 kDa aufweist. Generell werden sieben hydrophile und sieben hydrophobe Untereinheiten mit über 50 vorhergesagten Transmembranhelices gefunden. Im Komplex I aus Eukaryoten wurde eine grössere Anzahl zusätzlicher, akzessorischer Untereinheiten nachgewiesen. Hier werden die sieben hydrophoben Untereinheiten vom mitochondrialen Genom codiert, während alle anderen Untereinheiten kerncodiert sind und in das Mitochondrium importiert werden müssen.
Die obligat aerobe Hefe Yarrowia lipolytica wurde als Modellsystem zur Untersuchung von eukaryotischem Komplex I etabliert. Die bisher am besten untersuchte Hefe Saccharomyces cerevisiae enthält keinen Komplex I. Hier wird die Oxidation von NADH durch eine andere Klasse von sogenannten alternativen NADH Dehydrogenasen durchgeführt. Auch Y. lipolytica enthält ein solches alternatives Enzym, das allerdings mit seiner Substratbindungsstelle zur Aussenseite der inneren Mitochondrienmembran orientiert ist. Durch molekularbiologische Manipulation konnte eine interne Version dieses Enzymes exprimiert werden, wodurch es möglich ist, letale Defekte in Komplex I Deletionsmutanten zu kompensieren. Mittlerweile wurden alle Voraussetzungen geschaffen, um kerncodierte Untereinheiten von Komplex I aus Y. lipolytica gezielt genetisch zu verändern. Die Proteinreinigung wird durch die Verwendung einer auf einem His-tag basierenden Affinitätsreinigung erheblich erleichtert..
Correction: McCarthy, C.; et al. Developing Picornaviruses for Cancer Therapy. Cancers 2019, 11, 685
The authors wish to make the following corrections to this paper [...