3 research outputs found

    Highly metastatic K7M2 cell line: A novel murine model capable of in vivo imaging via luciferase vector transfection

    Get PDF
    Osteosarcoma is rare and little improvement in survival rates has occurred in the last 25 years despite modern chemotherapeutic treatment. Bioluminescent cell lines for the modeling of osteosarcoma have shown success in tracking metastases in vivo, but commonly use adenoviral vectors to transfect the native cell line with bioluminescent reporters. The purpose of this study was to develop an orthotopic model for metastatic osteosarcoma capable of in vivo monitoring of metastatic and primary tumor burden in an immunocompetent mouse and compare that model to its wild type pathogenesis. K7M2 cells were transfected using a plasmid vector and were stable after 12 weeks. Thirty-four female BALB/c mice aged four to five weeks underwent orthotopic implantation of either wild type (n=12) or transfected (n=22) K7M2 cells in the proximal tibia. Mice were monitored for tumor growth and weekly In Vivo Imaging System (IVIS) imaging was performed to monitor for pulmonary metastasis. Although tumors developed sooner in the wild type group, no significant differences were seen compared to Transfected Group 1 in rate of inoculation, growth rates after first detection, metastatic rate, and time between inoculation and death. This study establishes a new murine model for metastatic osteosarcoma using the K7M2-wt cell line transfected with a non-viral plasmid luciferase vector. The benefits of this preclinical model include an intact immune system and orthotopically driven metastatic disease; this model appears comparable to its wild type counterpart. In the future, the model may be used to examine promising immunomodulatory therapies using bioluminescence in vivo

    Novel rat tail discitis model using bioluminescent Staphylococcus aureus

    Get PDF
    Management of spondylodiscitis is a challenging clinical problem requiring medical and surgical treatment strategies. The purpose of this study was to establish a rat model of spondylodiscitis that utilizes bioluminescent Staphylococcus aureus, thus permitting in-vivo surveillance of infection intensity. Inocula of the bioluminescent S. aureus strain XEN36 were created in concentrations of 102 CFU/0.1 mL, 104 CFU/0.1 mL, and 106 CFU/0.1 mL. Three groups of rats were injected with the bacteria in the most proximal intervertebral tail segment. The third most proximal tail segment was injected with saline as a control. Bioluminescence was measured at baseline, 3 days, and weekly for a total of 6 weeks. Detected bioluminescence for each group peaked at day three and returned to baseline at 21 days. The average intensity was highest for the experimental group injected with the most concentrated bacterial solution (106 CFU/0.1 mL). Radiographic analysis revealed loss of intervertebral disc space and evidence of osseous bridging. Saline injected spaces exhibited no decrease in intervertebral spacing as compared to distal sites. Histologic analysis revealed neutrophilic infiltrates, destruction of the annulus fibrosus and nucleus pulposus, destruction of vertebral endplates, and osseous bridging. Saline injected discs exhibited preserved annulus fibrosus and nucleus pulposus on histology. This study demonstrates that injection of bioluminescent S. aureus into the intervertebral disc of a rat tail is a viable animal model for spondylodiscitis research. This model allows for real-time, in-vivo quantification of infection intensity, which may decrease the number of animals required for infection studies of the intervertebral disc
    corecore