23 research outputs found

    A thermostable protein matrix for spectroscopic analysis of organic semiconductors

    Get PDF
    Advances in protein design and engineering have yielded peptide assemblies with enhanced and non-native functionalities. Here, various molecular organic semiconductors (OSCs), with known excitonic up- and down-conversion properties, are attached to a de novo-designed protein, conferring entirely novel functions on the peptide scaffolds. The protein-OSC complexes form similarly sized, stable, water-soluble nanoparticles that are robust to cryogenic freezing and processing into the solid-state. The peptide matrix enables the formation of protein-OSC-trehalose glasses that fix the proteins in their folded states under oxygen-limited conditions. The encapsulation dramatically enhances the stability of protein-OSC complexes to photodamage, increasing the lifetime of the chromophores from several hours to more than 10 weeks under constant illumination. Comparison of the photophysical properties of astaxanthin aggregates in mixed-solvent systems and proteins shows that the peptide environment does not alter the underlying electronic processes of the incorporated materials, exemplified here by singlet exciton fission followed by separation into weakly bound, localized triplets. This adaptable protein-based approach lays the foundation for spectroscopic assessment of a broad range of molecular OSCs in aqueous solutions and the solid-state, circumventing the laborious procedure of identifying the experimental conditions necessary for aggregate generation or film formation. The non-native protein functions also raise the prospect of future biocompatible devices where peptide assemblies could complex with native and non-native systems to generate novel functional materials

    Gust response of aeroelastically tailored wind turbines

    Get PDF
    Some interesting challenges arise from the drive to build larger, more durable rotors that produce cheaper energy. The rationale is that, with current wind turbine designs, the power generated is theoretically proportional to the square of blade length. One enabling technology is aeroelastic tailoring that offers enhanced combined energy capture and system durability. The design of two adaptive, aeroelastically tailored blade configurations is considered here. One uses material bend-twist coupling; the other combines both material and geometric coupling. Each structural design meets a predefined coupling distribution, whilst approximately matching the stiffness of an uncoupled baseline blade. A gust analysis shows beneficial flapwise load alleviation for both adaptive blades, with the additional benefits of smoothing variations in electrical power and rotational speed
    corecore