20 research outputs found

    High-throughput screening for substrate specificity-adapted mutants of the nisin dehydratase NisB

    Get PDF
    Microbial lanthipeptides are formed by a two-step enzymatic introduction of (methyl)lanthionine rings. A dehydratase catalyzes the dehydration of serine and threonine residues, yielding dehydroalanine and dehydrobutyrine, respectively. Cyclase-catalyzed coupling of the formed dehydroresidues to cysteines forms (methyl)lanthionine rings in a peptide. Lanthipeptide biosynthetic systems allow discovery of target-specific, lanthionine-stabilized therapeutic peptides. However, the substrate specificity of existing modification enzymes impose limitations on installing lanthionines in non-natural substrates. The goal of the present study was to obtain a lanthipeptide dehydratase with the capacity to dehydrate substrates that are unsuitable for the nisin dehydratase NisB. We report high-throughput screening for tailored specificity of intracellular, genetically encoded NisB dehydratases. The principle is based on the screening of bacterially displayed lanthionine-constrained streptavidin ligands, which have a much higher affinity for streptavidin than linear ligands. The designed NisC-cyclizable high-affinity ligands can be formed via mutant NisB-catalyzed dehydration but less effectively via wild-type NisB activity. In Lactococcus lactis, a cell surface display precursor was designed comprising DSHPQFC. The Asp residue preceding the serine in this sequence disfavors its dehydration by wild-type NisB. The cell surface display vector was coexpressed with a mutant NisB library and NisTC. Subsequently, mutant NisB-containing bacteria that display cyclized strep ligands on the cell surface were selected via panning rounds with streptavidin-coupled magnetic beads. In this way, a NisB variant with a tailored capacity of dehydration was obtained, which was further evaluated with respect to its capacity to dehydrate nisin mutants. These results demonstrate a powerful method for selecting lanthipeptide modification enzymes with adapted substrate specificity

    Engineering bacteria for the degradation of halopropanes

    Get PDF
    Bacteria can consume an enormous large variety of organic chemicals as carbon and energy source. Exposure to natural organic compounds has provided the selective pressure to drive the evolution of catabolic enzymes and pathways over millions of years, yielding organisms capable of degrading or modifying many unpalatable, yet natural, chemicals. However, over the past 100 years human activities have introduced many xenobiotic halogenated organics into the environment.

    Genetically Encoded Libraries of Constrained Peptides

    Get PDF
    Many therapeutic peptides can still be improved with respect to target specificity, target affinity, resistance to peptidases/proteases, physical stability and capacity to pass membranes required for oral delivery. Several modifications can improve the peptides' properties in particular those that impose (a) conformational constraint(s). The screening of constrained peptides and the identification of hits is a lot facilitated by the generation of genetically encoded libraries. Recent breakthrough bacterial, phage and yeast display screening systems of ribosomally-synthesized posttranslationally-constrained peptides, particularly those of lanthipeptides, are earning special attention. Here we provide a view of display systems of constrained, genetically encoded peptides and indicate prospects of constrained peptide-displaying phage and bacterial systems as such in vivo

    Biodegradation of 1,2,3-Trichloropropane through Directed Evolution and Heterologous Expression of a Haloalkane Dehalogenase Gene

    Get PDF
    Using a combined strategy of random mutagenesis of haloalkane dehalogenase and genetic engineering of a chloropropanol-utilizing bacterium, we constructed an organism that is capable of growth on 1,2,3-trichloropropane (TCP). This highly toxic and recalcitrant compound is a waste product generated from the manufacture of the industrial chemical epichlorohydrin. Attempts to select and enrich bacterial cultures that can degrade TCP from environmental samples have repeatedly been unsuccessful, prohibiting the development of a biological process for groundwater treatment. The critical step in the aerobic degradation of TCP is the initial dehalogenation to 2,3-dichloro-1-propanol. We used random mutagenesis and screening on eosin-methylene blue agar plates to improve the activity on TCP of the haloalkane dehalogenase from Rhodococcus sp. m15-3 (DhaA). A second-generation mutant containing two amino acid substitutions, Cys176Tyr and Tyr273Phe, was nearly eight times more efficient in dehalogenating TCP than wild-type dehalogenase. Molecular modeling of the mutant dehalogenase indicated that the Cys176Tyr mutation has a global effect on the active-site structure, allowing a more productive binding of TCP within the active site, which was further fine tuned by Tyr273Phe. The evolved haloalkane dehalogenase was expressed under control of a constitutive promoter in the 2,3-dichloro-1-propanol-utilizing bacterium Agrobacterium radiobacter AD1, and the resulting strain was able to utilize TCP as the sole carbon and energy source. These results demonstrated that directed evolution of a key catabolic enzyme and its subsequent recruitment by a suitable host organism can be used for the construction of bacteria for the degradation of a toxic and environmentally recalcitrant chemical

    Utilization of Trihalogenated Propanes by Agrobacterium radiobacter AD1 through Heterologous Expression of the Haloalkane Dehalogenase from Rhodococcus sp. Strain m15-3

    Get PDF
    Trihalogenated propanes are toxic and recalcitrant organic compounds. Attempts to obtain pure bacterial cultures able to use these compounds as sole carbon and energy sources were unsuccessful. Both the haloalkane dehalogenase from Xanthobacter autotrophicus GJ10 (DhlA) and that from Rhodococcus sp. strain m15-3 (DhaA) were found to dehalogenate trihalopropanes to 2,3-dihalogenated propanols, but the kinetic properties of the latter enzyme are much better. Broad-host-range dehalogenase expression plasmids, based on RSF1010 derivatives, were constructed with the haloalkane dehalogenase from Rhodococcus sp. strain m15-3 under the control of the heterologous promoters P(lac), P(dhlA), and P(trc). The resulting plasmids yielded functional expression in several gram-negative bacteria. A catabolic pathway for trihalopropanes was designed by introducing these broad-host-range dehalogenase expression plasmids into Agrobacterium radiobacter AD1, which has the ability to utilize dihalogenated propanols for growth. The recombinant strain AD1(pTB3), expressing the haloalkane dehalogenase gene under the control of the dhlA promoter, was able to utilize both 1,2,3-tribromopropane and 1,2-dibromo-3-chloropropane as sole carbon sources. Moreover, increased expression of the haloalkane dehalogenase resulted in elevated resistance to trihalopropanes

    Biosynthesis of lanthionine-constrained agonists of G protein-coupled receptors

    No full text
    The conformation with which natural agonistic peptides interact with G protein-coupled receptor(s) (GPCR(s)) partly results from intramolecular interactions such as hydrogen bridges or is induced by ligand-receptor interactions. The conformational freedom of a peptide can be constrained by intramolecular cross-links. Conformational constraints enhance the receptor specificity, may lead to biased activity and confer proteolytic resistance to peptidic GPCR agonists. Chemical synthesis allows to introduce a variety of cross-links into a peptide and is suitable for bulk production of relatively simple lead peptides. Lanthionines are thioether bridged alanines of which the two alanines can be introduced at different distances in chosen positions in a peptide. Thioether bridges are much more stable than disulfide bridges. Biosynthesis of lanthionine-constrained peptides exploiting engineered Gram-positive or Gram-negative bacteria that contain lanthionine-introducing enzymes constitutes a convenient method for discovery of lanthionine-stabilized GPCR agonists. The presence of an N-terminal leader peptide enables dehydratases to dehydrate serines and threonines in the peptide of interest after which a cyclase can couple the formed dehydroamino acids to cysteines forming (methyl)lanthionines. The leader peptide also guides the export of the formed lanthionine-containing precursor peptide out of Gram-positive bacteria via a lanthipeptide transporter. An engineered cleavage site in the C-terminus of the leader peptide allows to cleave off the leader peptide yielding the modified peptide of interest. Lanthipeptide GPCR agonists are an emerging class of therapeutics of which a few examples have demonstrated high efficacy in animal models of a variety of diseases. One lanthipeptide GPCR agonist has successfully passed clinical Phase Ia

    Semi-microbiological synthesis of an active lysinoalanine-bridged analog of glucagon-like-peptide-1

    Get PDF
    Some modified glucagon-like-peptide-1 (GLP-1) analogs are highly important for treating type 2 diabetes. Here we investigated whether GLP-1 analogs expressed in Lactococcus lactis could be substrates for modification and export by the nisin dehydratase and transporter enzyme. Subsequently we introduced a lysinoalanine by coupling a formed dehydroalanine with a lysine and investigated the structure and activity of the formed lysinoalanine-bridged GLP-1 analog. Our data show: (i) GLP-1 fused to the nisin leader peptide is very well exported via the nisin transporter NisT, (ii) production of leader-GLP-1 via NisT is higher than via the SECsystem, (iii) leader-GLP-1 exported via NisT was more efficiently dehydrated by the nisin dehydratase NisB than when exported via the SEC system, (iv) individual serines and threonines in GLP-1 are dehydrated by NisB to a significantly different extent, (v) an introduced Ser30 is well dehydrated and can be coupled to Lys34 to form a lysinoalanine-bridged GLP-1 analog, (vi) a lysinoalanine(30-34) variant's conformation shifts in the presence of 25% trifluoroethanol towards a higher alpha helix content than observed for wild type GLP-1 under identical condition, (vii) a lysinoalanine(30-34) GLP-1 variant has retained significant activity. Taken together the data extend knowledge on the substrate specificities of NisT and NisB and their combined activity relative to export via the Sec system, and demonstrate that introducing a lysinoalanine bridge is an option for modifying therapeutic peptides. (C) 2017 Elsevier Inc. All rights reserved
    corecore