14 research outputs found

    Probe dependency in the determination of ligand binding kinetics at a prototypical G protein-coupled receptor

    Get PDF
    © 2019, The Author(s). Drug-target binding kinetics are suggested to be important parameters for the prediction of in vivo drug-efficacy. For G protein-coupled receptors (GPCRs), the binding kinetics of ligands are typically determined using association binding experiments in competition with radiolabelled probes, followed by analysis with the widely used competitive binding kinetics theory developed by Motulsky and Mahan. Despite this, the influence of the radioligand binding kinetics on the kinetic parameters derived for the ligands tested is often overlooked. To address this, binding rate constants for a series of histamine H1 receptor (H1R) antagonists were determined using radioligands with either slow (low koff) or fast (high koff) dissociation characteristics. A correlation was observed between the probe-specific datasets for the kinetic binding affinities, association rate constants and dissociation rate constants. However, the magnitude and accuracy of the binding rate constant-values was highly dependent on the used radioligand probe. Further analysis using recently developed fluorescent binding methods corroborates the finding that the Motulsky-Mahan methodology is limited by the employed assay conditions. The presented data suggest that kinetic parameters of GPCR ligands depend largely on the characteristics of the probe used and results should therefore be viewed within the experimental context and limitations of the applied methodology

    Principals in Programming Languages: Technical Results

    Full text link
    This is the companion technical report for ``Principals in Programming Languages'' [20]. See that document for a more readable version of these results. In this paper, we describe two variants of the simply typed λ\lambda-calculus extended with a notion of {\em principal}. The results are languages in which intuitive statements like ``the client must call open\mathtt{open} to obtain a file handle'' can be phrased and proven formally. The first language is a two-agent calculus with references and recursive types, while the second language explores the possibility of multiple agents with varying amounts of type information. We use these calculi to give syntactic proofs of some type abstraction results that traditionally require semantic arguments

    Development of novel fluorescent histamine H₁-receptor antagonists to study ligand-binding kinetics in living cells

    Get PDF
    The histamine H1-receptor (H1R) is an important mediator of allergy and inflammation. H1R antagonists have particular clinical utility in allergic rhinitis and urticaria. Here we have developed six novel fluorescent probes for this receptor that are very effective for high resolution confocal imaging, alongside bioluminescence resonance energy transfer approaches to monitor H1R ligand binding kinetics in living cells. The latter technology exploits the opportunities provided by the recently described bright bioluminescent protein NanoLuc when it is fused to the N-terminus of a receptor. Two different pharmacophores (mepyramine or the fragment VUF13816) were used to generate fluorescent H1R antagonists conjugated via peptide linkers to the fluorophore BODIPY630/650. Kinetic properties of the probes showed wide variation, with the VUF13816 analogues having much longer H1R residence times relative to their mepyramine-based counterparts. The kinetics of these fluorescent ligands could also be monitored in membrane preparations providing new opportunities for future drug discovery applications

    Optical control of the ?2-adrenergic receptor with opto-prop-2: A cis-active azobenzene analog of propranolol

    Get PDF
    In this study, we synthesized and evaluated new photoswitchable ligands for the beta-adrenergic receptors ?1-AR and ?2-AR, applying an azologization strategy to the first-generation beta-blocker propranolol. The resulting compounds (Opto-prop-1, -2, -3) have good photochemical properties with high levels of light-induced trans-cis isomerization (>94%) and good thermal stability (t1/2 > 10 days) of the resulting cis-isomer in an aqueous buffer. Upon illumination with 360-nm light to PSScis, large differences in binding affinities were observed for photoswitchable compounds at ?1-AR as well as ?2-AR. Notably, Opto-prop-2 (VUF17062) showed one of the largest optical shifts in binding affinities at the ?2-AR (587-fold, cis-active), as recorded so far for photoswitches of G protein-coupled receptors. We finally show the broad utility of Opto-prop-2 as a light-dependent competitive antagonist of the ?2-AR as shown with a conformational ?2-AR sensor, by the recruitment of downstream effector proteins and functional modulation of isolated adult rat cardiomyocytes

    Ligand-binding kinetics on histamine receptors

    No full text
    Equilibrium-binding affinities of ligands for a drug target do not always accurately reflect the success of drug candidates in the clinic. Affinity-based predictions concerning competitive antagonism on the target will only be accurate if equilibrium binding of both ligands is allowed. Unless equilibrium for ligand bind- ing is obtained really quickly, it is unlikely that equilibrium is established in vivo. Instead, concentrations of (endogenous) ligands rapidly fluctuate over time. Hence, the velocity in which binding equilibrium is reached and the duration of target occupancy by the ligand (also known as residence time) are thought to be more important predictors of drug in vivo efficacy. This chapter provides the theoretical background on ligand-binding kinetics and several experimental approaches to determine the target residence time of antihistamines on histamine receptors

    The long duration of action of the second generation antihistamine bilastine coincides with its long residence time at the histamine H<sub>1</sub> receptor

    No full text
    Drug-target binding kinetics has recently attracted considerable interest in view of the potential predictive power for in vivo drug efficacy. The recently introduced antihistamine bilastine has a long duration of in vivo drug action, which outlasts pharmacological active bilastine concentrations in blood. To provide a molecular basis for the long duration of action, we explored the kinetics of bilastine binding to the human histamine H1 receptor using [3H]mepyramine binding studies and compared its pharmacodynamics properties to the reference compounds fexofenadine and diphenhydramine, which have a long (60 ± 20 min) and short (0.41 ± 0.1 min) residence time, respectively. Bilastine shows a long drug-target residence time at the H1 receptor (73 ± 5 min) and this results in a prolonged H1 receptor antagonism in vitro (Ca2+ mobilization in Fluo-4 loaded HeLa cells), following a washout of unbound antagonist. Hence, the long residence time of bilastine can explain the observed long duration of drug action in vivo

    The Target Residence Time of Antihistamines Determines Their Antagonism of the G Protein-Coupled Histamine H1 Receptor

    No full text
    The pharmacodynamics of drug-candidates is often optimized by metrics that describe target binding (Kd or Ki value) or target modulation (IC50). However, these metrics are determined at equilibrium conditions, and consequently information regarding the onset and offset of target engagement and modulation is lost. Drug-target residence time is a measure for the lifetime of the drug-target complex, which has recently been receiving considerable interest, as target residence time is shown to have prognostic value for the in vivo efficacy of several drugs. In this study, we have investigated the relation between the increased residence time of antihistamines at the histamine H1 receptor (H1R) and the duration of effective target-inhibition by these antagonists. Hela cells, endogenously expressing low levels of the H1R, were incubated with a series of antihistamines and dissociation was initiated by washing away the unbound antihistamines. Using a calcium-sensitive fluorescent dye and a label free, dynamic mass redistribution based assay, functional recovery of the H1R responsiveness was measured by stimulating the cells with histamine over time, and the recovery was quantified as the receptor recovery time. Using these assays, we determined that the receptor recovery time for a set of antihistamines differed more than 40-fold and was highly correlated to their H1R residence times, as determined with competitive radioligand binding experiments to the H1R in a cell homogenate. Thus, the receptor recovery time is proposed as a cell-based and physiologically relevant metric for the lead optimization of G protein-coupled receptor antagonists, like the H1R antagonists. Both, label-free or real-time, classical signaling assays allow an efficient and physiologically relevant determination of kinetic properties of drug molecules

    Exploring the Effect of Cyclization of Histamine H1 Receptor Antagonists on Ligand Binding Kinetics

    No full text
    There is an increasing interest in guiding hit optimization by considering the target binding kinetics of ligands. However, compared to conventional structure-activity relationships, structure-kinetics relationships have not been as thoroughly explored, even for well-studied archetypical drug targets such as the histamine H1 receptor (H1R), a member of the family A G-protein coupled receptor. In this study, we show that the binding kinetics of H1R antagonists at the H1R is dependent on the cyclicity of both the aromatic head group and the amine moiety of H1R ligands, the chemotypes that are characteristic for the first-generation H1R antagonists. Fusing the two aromatic rings of H1R ligands into one tricyclic aromatic head group prolongs the H1R residence time for benchmark H1R ligands as well as for tailored synthetic analogues. The effect of constraining the aromatic rings and the basic amines is systematically explored, leading to a coherent series and detailed discussions of structure-kinetics relationships. This study shows that cyclicity has a pronounced effect on the binding kinetics

    Exploring the Effect of Cyclization of Histamine H1Receptor Antagonists on Ligand Binding Kinetics

    No full text
    There is an increasing interest in guiding hit optimization by considering the target binding kinetics of ligands. However, compared to conventional structure-activity relationships, structure-kinetics relationships have not been as thoroughly explored, even for well-studied archetypical drug targets such as the histamine H1 receptor (H1R), a member of the family A G-protein coupled receptor. In this study, we show that the binding kinetics of H1R antagonists at the H1R is dependent on the cyclicity of both the aromatic head group and the amine moiety of H1R ligands, the chemotypes that are characteristic for the first-generation H1R antagonists. Fusing the two aromatic rings of H1R ligands into one tricyclic aromatic head group prolongs the H1R residence time for benchmark H1R ligands as well as for tailored synthetic analogues. The effect of constraining the aromatic rings and the basic amines is systematically explored, leading to a coherent series and detailed discussions of structure-kinetics relationships. This study shows that cyclicity has a pronounced effect on the binding kinetics

    BRET-Based Biosensors to Measure Agonist Efficacies in Histamine H<sub>1</sub> Receptor-Mediated G Protein Activation, Signaling and Interactions with GRKs and β-Arrestins

    No full text
    The histamine H(1) receptor (H(1)R) is a G protein-coupled receptor (GPCR) and plays a key role in allergic reactions upon activation by histamine which is locally released from mast cells and basophils. Consequently, H(1)R is a well-established therapeutic target for antihistamines that relieve allergy symptoms. H(1)R signals via heterotrimeric G(q) proteins and is phosphorylated by GPCR kinase (GRK) subtypes 2, 5, and 6, consequently facilitating the subsequent recruitment of β-arrestin1 and/or 2. Stimulation of a GPCR with structurally different agonists can result in preferential engagement of one or more of these intracellular signaling molecules. To evaluate this so-called biased agonism for H(1)R, bioluminescence resonance energy transfer (BRET)-based biosensors were applied to measure H(1)R signaling through heterotrimeric G(q) proteins, second messengers (inositol 1,4,5-triphosphate and Ca(2+)), and receptor-protein interactions (GRKs and β-arrestins) in response to histamine, 2-phenylhistamines, and histaprodifens in a similar cellular background. Although differences in efficacy were observed for these agonists between some functional readouts as compared to reference agonist histamine, subsequent data analysis using an operational model of agonism revealed only signaling bias of the agonist Br-phHA-HA in recruiting β-arrestin2 to H(1)R over G(q) biosensor activation
    corecore