8 research outputs found

    FCC-ee: The Lepton Collider: Future Circular Collider Conceptual Design Report Volume 2

    Get PDF
    In response to the 2013 Update of the European Strategy for Particle Physics, the Future Circular Collider (FCC) study was launched, as an international collaboration hosted by CERN. This study covers a highest-luminosity high-energy lepton collider (FCC-ee) and an energy-frontier hadron collider (FCC-hh), which could, successively, be installed in the same 100 km tunnel. The scientific capabilities of the integrated FCC programme would serve the worldwide community throughout the 21st century. The FCC study also investigates an LHC energy upgrade, using FCC-hh technology. This document constitutes the second volume of the FCC Conceptual Design Report, devoted to the electron-positron collider FCC-ee. After summarizing the physics discovery opportunities, it presents the accelerator design, performance reach, a staged operation scenario, the underlying technologies, civil engineering, technical infrastructure, and an implementation plan. FCC-ee can be built with today’s technology. Most of the FCC-ee infrastructure could be reused for FCC-hh. Combining concepts from past and present lepton colliders and adding a few novel elements, the FCC-ee design promises outstandingly high luminosity. This will make the FCC-ee a unique precision instrument to study the heaviest known particles (Z, W and H bosons and the top quark), offering great direct and indirect sensitivity to new physics

    FCC Physics Opportunities: Future Circular Collider Conceptual Design Report Volume 1

    Get PDF
    We review the physics opportunities of the Future Circular Collider, covering its e+e-, pp, ep and heavy ion programmes. We describe the measurement capabilities of each FCC component, addressing the study of electroweak, Higgs and strong interactions, the top quark and flavour, as well as phenomena beyond the Standard Model. We highlight the synergy and complementarity of the different colliders, which will contribute to a uniquely coherent and ambitious research programme, providing an unmatchable combination of precision and sensitivity to new physics

    FCC-hh: The Hadron Collider: Future Circular Collider Conceptual Design Report Volume 3

    Get PDF
    In response to the 2013 Update of the European Strategy for Particle Physics (EPPSU), the Future Circular Collider (FCC) study was launched as a world-wide international collaboration hosted by CERN. The FCC study covered an energy-frontier hadron collider (FCC-hh), a highest-luminosity high-energy lepton collider (FCC-ee), the corresponding 100 km tunnel infrastructure, as well as the physics opportunities of these two colliders, and a high-energy LHC, based on FCC-hh technology. This document constitutes the third volume of the FCC Conceptual Design Report, devoted to the hadron collider FCC-hh. It summarizes the FCC-hh physics discovery opportunities, presents the FCC-hh accelerator design, performance reach, and staged operation plan, discusses the underlying technologies, the civil engineering and technical infrastructure, and also sketches a possible implementation. Combining ingredients from the Large Hadron Collider (LHC), the high-luminosity LHC upgrade and adding novel technologies and approaches, the FCC-hh design aims at significantly extending the energy frontier to 100 TeV. Its unprecedented centre of-mass collision energy will make the FCC-hh a unique instrument to explore physics beyond the Standard Model, offering great direct sensitivity to new physics and discoveries

    Identification Of Kif21A Mutations As A Rare Cause Of Congenital Fibrosis Of The Extraocular Muscles Type 3 (Cfeom3)

    No full text
    PURPOSE. Three congenital fibrosis of the extraocular muscles phenotypes (CFEOM1-3) have been identified. Each represents a specific form of paralytic strabismus characterized by congenital restrictive ophthalmoplegia, often with accompanying ptosis. It has been demonstrated that CFEOM1 results from mutations in KIF21A and CFEOM2 from mutations in PHOX2A. This study was conducted to determine the incidence of KIF21A and PHOX2A mutations among individuals with the third CFEOM phenotype, CFEOM3. METHODS. All pedigrees and sporadic individuals with CFEOM3 in the authors' database were identified, whether the pedigrees were linked or consistent with linkage to the FEOM1, FEOM2, and/or FEOM3 loci was determined, and the appropriate pedigrees and the sporadic individuals were screened for mutations in KIF21A and PHOX2A. RESULTS. Twelve CFEOM3 pedigrees and 10 CFEOM3 sporadic individuals were identified in the database. The structures of eight of the pedigrees permitted the generation of meaningful linkage data. KIF21A was screened in 17 probands, and mutations were identified in two CFEOM3 pedigrees. One pedigree harbored a novel mutation (2841G-->A, M947I) and one harbored the most common and recurrent of the CFEOM1 mutations identified previously (2860C-->T, R954W). None of CFEOM3 pedigrees or sporadic individuals harbored mutations in PHOX2A. CONCLUSIONS. The results demonstrate that KIF21A mutations are a rare cause of CFEOM3 and that KIF21A mutations can be nonpenetrant. Although KIF21A is the first gene to be associated with CFEOM3, the results imply that mutations in the unidentified FEOM3 gene are the more common cause of this phenotype.WoSScopu

    IDENTIFICATION OF KIF21A MUTATIONS AS A RARE CAUSE OF CONGENITAL FIBROSIS OF THE EXTRAOCULAR MUSCLES TYPE 3 (CFEOM3).

    No full text
    PURPOSE: Three congenital fibrosis of the extraocular muscles phenotypes (CFEOM1-3) have been identified. Each represents a specific form of paralytic strabismus characterized by congenital restrictive ophthalmoplegia, often with accompanying ptosis. It has been demonstrated that CFEOM1 results from mutations in KIF21A and CFEOM2 from mutations in PHOX2A. This study was conducted to determine the incidence of KIF21A and PHOX2A mutations among individuals with the third CFEOM phenotype, CFEOM3. METHODS: All pedigrees and sporadic individuals with CFEOM3 in the authors' database were identified, whether the pedigrees were linked or consistent with linkage to the FEOM1, FEOM2, and/or FEOM3 loci was determined, and the appropriate pedigrees and the sporadic individuals were screened for mutations in KIF21A and PHOX2A. RESULTS: Twelve CFEOM3 pedigrees and 10 CFEOM3 sporadic individuals were identified in the database. The structures of eight of the pedigrees permitted the generation of meaningful linkage data. KIF21A was screened in 17 probands, and mutations were identified in two CFEOM3 pedigrees. One pedigree harbored a novel mutation (2841G-->A, M947I) and one harbored the most common and recurrent of the CFEOM1 mutations identified previously (2860C-->T, R954W). None of CFEOM3 pedigrees or sporadic individuals harbored mutations in PHOX2A. CONCLUSIONS: The results demonstrate that KIF21A mutations are a rare cause of CFEOM3 and that KIF21A mutations can be nonpenetrant. Although KIF21A is the first gene to be associated with CFEOM3, the results imply that mutations in the unidentified FEOM3 gene are the more common cause of this phenotype

    Lactic Acid Bacteria and the Human Gastrointestinal Tract

    No full text
    corecore