4 research outputs found

    Immune Imprinting Drives Human Norovirus Potential for Global Spread

    Get PDF
    Understanding the complex interactions between virus and host that drive new strain evolution is key to predicting the emergence potential of variants and informing vaccine development. Under our hypothesis, future dominant human norovirus GII.4 variants with critical antigenic properties that allow them to spread are currently circulating undetected, having diverged years earlier. Through large-scale sequencing of GII.4 surveillance samples, we identified two variants with extensive divergence within domains that mediate neutralizing antibody binding. Subsequent serological characterization of these strains using temporally resolved adult and child sera suggests that neither candidate could spread globally in adults with multiple GII.4 exposures, yet young children with minimal GII.4 exposure appear susceptible. Antigenic cartography of surveillance and outbreak sera indicates that continued population exposure to GII.4 Sydney 2012 and antigenically related variants over a 6-year period resulted in a broadening of immunity to heterogeneous GII.4 variants, including those identified here. We show that the strongest antibody responses in adults exposed to GII.4 Sydney 2012 are directed to previously circulating GII.4 viruses. Our data suggest that the broadening of antibody responses compromises establishment of strong GII.4 Sydney 2012 immunity, thereby allowing the continued persistence of GII.4 Sydney 2012 and modulating the cycle of norovirus GII.4 variant replacement. Our results indicate a cycle of norovirus GII.4 variant replacement dependent upon population immunity. Young children are susceptible to divergent variants; therefore, emergence of these strains worldwide is driven proximally by changes in adult serological immunity and distally by viral evolution that confers fitness in the context of immunity

    Evolution of viral variants in remdesivir-treated and untreated SARS-CoV-2-infected pediatrics patients

    Get PDF
    Detailed information on intrahost viral evolution in SARS-CoV-2 with and without treatment is limited. Sequential viral loads and deep sequencing of SARS-CoV-2 from the upper respiratory tract of nine hospitalized children, three of whom were treated with remdesivir, revealed that remdesivir treatment suppressed viral load in one patient but not in a second infected with an identical strain without any evidence of drug resistance found. Reduced levels of subgenomic RNA during treatment of the second patient, suggest an additional effect of remdesivir on viral replication. Haplotype reconstruction uncovered persistent SARS-CoV-2 variant genotypes in four patients. These likely arose from within-host evolution, although superinfection cannot be excluded in one case. Although our dataset is small, observed sample-to-sample heterogeneity in variant frequencies across four of nine patients suggests the presence of discrete viral populations in the lung with incomplete population sampling in diagnostic swabs. Such compartmentalization could compromise the penetration of remdesivir into the lung, limiting the drugs in vivo efficacy, as has been observed in other lung infections

    Mathematical Modeling of Within-Host, Untreated, Cytomegalovirus Infection Dynamics after Allogeneic Transplantation

    No full text
    Cytomegalovirus (CMV) causes significant morbidity and mortality in recipients of allogeneic hematopoietic cell transplantation (HCT). Whereas insights gained from mathematical modeling of other chronic viral infections such as HIV, hepatitis C, and herpes simplex virus-2 have aided in optimizing therapy, previous CMV modeling has been hindered by a lack of comprehensive quantitative PCR viral load data from untreated episodes of viremia in HCT recipients. We performed quantitative CMV DNA PCR on stored, frozen serum samples from the placebo group of participants in a historic randomized controlled trial of ganciclovir for the early treatment of CMV infection in bone marrow transplant recipients. We developed four main ordinary differential Equation mathematical models and used model selection theory to choose between 38 competing versions of these models. Models were fit using a population, nonlinear, mixed-effects approach. We found that CMV kinetics from untreated HCT recipients are highly variable. The models that recapitulated the observed patterns most parsimoniously included explicit, dynamic immune cell compartments and did not include dynamic target cell compartments, consistent with the large number of tissue and cell types that CMV infects. In addition, in our best-fitting models, viral clearance was extremely slow, suggesting severe impairment of the immune response after HCT. Parameters from our best model correlated well with participants’ clinical risk factors and outcomes from the trial, further validating our model. Our models suggest that CMV dynamics in HCT recipients are determined by host immune response rather than target cell limitation in the absence of antiviral treatment

    Mathematical modeling to reveal breakthrough mechanisms in the HIV Antibody Mediated Prevention (AMP) trials.

    Get PDF
    The ongoing Antibody Mediated Prevention (AMP) trials will uncover whether passive infusion of the broadly neutralizing antibody (bNAb) VRC01 can protect against HIV acquisition. Previous statistical simulations indicate these trials may be partially protective. In that case, it will be crucial to identify the mechanism of breakthrough infections. To that end, we developed a mathematical modeling framework to simulate the AMP trials and infer the breakthrough mechanisms using measurable trial outcomes. This framework combines viral dynamics with antibody pharmacokinetics and pharmacodynamics, and will be generally applicable to forthcoming bNAb prevention trials. We fit our model to human viral load data (RV217). Then, we incorporated VRC01 neutralization using serum pharmacokinetics (HVTN 104) and in vitro pharmacodynamics (LANL CATNAP database). We systematically explored trial outcomes by reducing in vivo potency and varying the distribution of sensitivity to VRC01 in circulating strains. We found trial outcomes could be used in a clinical trial regression model (CTRM) to reveal whether partially protective trials were caused by large fractions of VRC01-resistant (IC50>50 μg/mL) circulating strains or rather a global reduction in VRC01 potency against all strains. The former mechanism suggests the need to enhance neutralizing antibody breadth; the latter suggests the need to enhance VRC01 delivery and/or in vivo binding. We will apply the clinical trial regression model to data from the completed trials to help optimize future approaches for passive delivery of anti-HIV neutralizing antibodies
    corecore