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Abstract

The ongoing Antibody Mediated Prevention (AMP) trials will uncover whether passive infusion
of the broadly neutralizing antibody (bNAb) VRCO1 can protect against HIV acquisition. Previ-
ous statistical simulations indicate these trials may be partially protective. In that case, it will
be crucial to identify the mechanism of breakthrough infections. To that end, we developed a
mathematical modeling framework to simulate the AMP trials and infer the breakthrough
mechanisms using measurable trial outcomes. This framework combines viral dynamics with
antibody pharmacokinetics and pharmacodynamics, and will be generally applicable to forth-
coming bNADb prevention trials. We fit our model to human viral load data (RV217). Then, we
incorporated VRCO1 neutralization using serum pharmacokinetics (HVTN 104) and in vitro
pharmacodynamics (LANL CATNAP database). We systematically explored trial outcomes
by reducing in vivo potency and varying the distribution of sensitivity to VRCO1 in circulating
strains. We found trial outcomes could be used in a clinical trial regression model (CTRM) to
reveal whether partially protective trials were caused by large fractions of VRCO1-resistant
(1C50>50 ug/mL) circulating strains or rather a global reduction in VRCO01 potency against all
strains. The former mechanism suggests the need to enhance neutralizing antibody breadth;
the latter suggests the need to enhance VRCO1 delivery and/or in vivo binding. We will apply
the clinical trial regression model to data from the completed trials to help optimize future
approaches for passive delivery of anti-HIV neutralizing antibodies.
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computational code used to perform simulations
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Author summary

Infusions of broadly neutralizing antibodies are currently being tested as a novel HIV pre-
vention modality. To help interpret the results of these antibody mediated prevention
(AMP) studies we developed a mathematical modeling framework. The approach com-
bines antibody potency and drug levels with models of HIV viral dynamics, which will be
generally applicable to future studies. Through simulating these clinical trials, we found
trial outcomes can be used in combination to infer whether breakthrough infections are
caused by large fractions of antibody-resistant circulating strains or some reduction in
potency against all strains. This distinction helps to focus future trials on enhancing neu-
tralizing antibody breadth or antibody delivery and/or in vivo binding.

Introduction

Interventions that prevent HIV acquisition embody a realistic route to reducing HIV-associ-
ated morbidity, mortality, and stigma around the world [1]. Current oral pre-exposure pro-
phylaxis (PrEP) regimens use antiretroviral therapy (ART) to mediate excellent but short-
lasting protection against HIV infection [2-4]. A longer lasting PrEP through infusion of
broadly neutralizing antibodies (bNAbs) represents a compelling candidate modality [5].
bNADs display impressive attributes for controlling HIV and may eventually enable host-gen-
erated protection if they can be elicited following vaccination [6].

Promising results using bNAbs to control HIV are manifold. Infused bNAbs reduce viral
loads in chronically infected individuals [7-9] and extend the time to viral rebound after stop-
ping ART [10, 11]. In nonhuman primate studies, passive infusion of bNAbs before viral chal-
lenge repeatedly prevents infection [12-14] and bNAbs administered within 48 hours of
infection appear to clear or control virus [15, 16].

Based on these findings, the phase 2b Antibody Mediated Prevention (AMP) trials were
designed to assess the prevention efficacy of passively infused bNAbs [17]. Their primary
objective is evaluation of the prevention efficacy (PE) of VRCO1 [18] (vs. placebo). Previous
statistical modeling has estimated wide ranges of PE. Though assumptions in these models
cannot be tested currently, PE estimates are inclusive of partial (or incomplete) protection,
meaning some treated individuals may be infected [19, 20].

If protection is indeed partial, a crucial objective will be to identify the mechanism of break-
through infections. To address this, we built on the quantitative mathematical modeling
framework of simulated clinical trials [21]. We fit a mechanistic model of natural HIV viral
dynamics [22] to data from primary HIV-1 infection in Thailand and East Africa [23] and
extended this model to include HIV neutralization by VRCO1. To parameterize the initial
VRCO01 model, we used serum pharmacokinetic (PK) [24] and available in vitro pharmacody-
namic (PD) characteristics of VRCO1 [25]. This approach is generally applicable to any future
HIV antibody mediated prevention study. However, we also adjusted our parameterizations
because VRCO1 concentrations in anatomic sites of HIV exposure may be lower than serum
levels, VRCO1 binding could be decreased in vivo, and available sequences tested against
VRCO01 may not be representative of circulating strains [26-28]. We explored models analyti-
cally in hypothetical 8 week dosing intervals and stochastically in simulated trials.

Trial simulations demonstrated that a combination of clinical outcomes including charac-
teristics of breakthrough viruses (mean and standard deviation of breakthrough virus IC50)
and the overall PE, can be used to discern whether most infections are due to decreased
potency and/or breadth in the AMP trials. If most breakthrough strains are extremely resistant,
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then increasing bNAb breadth or using combination bNAbs could mitigate that challenge [20,
29, 30]. However, if infecting virus is mostly sensitive to VRCO1, enhancing potency through
better bio-distribution will be a priority. In this way, our mechanistic inference from measur-
able trial outcomes may help prioritize future development strategies for neutralizing
antibodies.

Resulits
Modeling the Antibody Mediated Prevention trials

The antibody mediated prevention (AMP) trials are simultaneous global phase 2b randomized
trials HVTN 703/HPTN 081 and HVTN 704/HPTN 085 (ClinicalTrials.gov #NCT02568215
and ClinicalTrials.gov #NCT02716675, respectively). To simulate the AMP trials, we adopted a
slightly simplified study design as shown in Fig 1A. Here, each trial contains 3 equally popu-
lated arms: placebo, 10 mg/kg, and 30 mg/kg VRCO1. Infusion of VRCO1 occurs every 8 weeks
for 10 total doses and HIV testing occurs every 4 weeks. Our modeling approach involved
developing viral dynamics models, incorporating VRC01 PK/PD, simulating trials, and devel-
opment of a clinical trial regression model (CTRM) capable of distinguishing reduced potency
and insufficient breadth as causes of breakthrough infection (Fig 1B).

A deterministic mathematical model of primary HIV infection
recapitulates natural primary infection viral loads and semi-quantitative
host-cell dynamics

We designed and validated a deterministic mathematical model of natural HIV primary infec-
tion (Fig 2) [22]. Model equations are shown in Eq 5. In this model, susceptible cells S are natu-
rally maintained at homeostasis with birth rate ag and death rate ds. They become infected
with rate 8 upon exposure to free virus V. Infected cells I; , have a state s € [A, L] representing
active or latent, and a phenotype p € [U, P] representing unproductively or productively infec-
tious provirus. The death rate of infected cells ¢ L, depends on their state, with viral cytopathic

A Antibody mediated prevention (AMP) trials B Modeling workflow

HVTN 703/HPTN 081 HVTN 704/HPTN 085

Develop representative

Sub-Saharan Africa Americas, Europe d viral dynamics
N=1900, Women Q N=2700, MSM+TG l

(633,633,

3 dose
arms:

) (900, 900, )

low dose high dose Combine with VRCO1 PK/PD
(10 mg/kg) (30 mg/kg) l

placebo
(no VRCO1)

10 infusion intervals Simulate trials, varying underlying

0 8 16

——+—+—+—+—+—+—1 time (weeks) mechanistic assumptions
24 32 40 48 56 64 72 80

/Z‘ VRCO1 infusion l

A

single infusion interval Develop clinical trial regression

S+ A+ time (weeks) model (CTRM) to infer mechanistic
1 2 3 5 6 7 8 . .
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Fig 1. The model implementation of the Antibody Mediated Prevention (AMP) trials. A) Two parallel trials in African women and
North American MSM and TG individuals. Each trial contains 3 equally populated arms, placebo (gray), 10 mg/kg infusions (teal), and
30 mg/kg infusions (tan). Infusions occur every 8 weeks, for a total of 80 weeks and HIV testing occurs every 4 weeks. We refer to an 8
week interval as a ‘dosing interval’. B) The model workflow outlines the results.

https://doi.org/10.1371/journal.pchi.1007626.9001
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Fig 2. A mechanistic mathematical model of HIV primary infection including VRCO1. A) Model schematic: susceptible cells S become infected I ,. If the cell is
activated s = A and the provirus is productive p = P, that cell produces virus with rate 7. An adaptive immune compartment E is recruited to remove infected cells
with rate w, but saturates when E > Esg. The presence of VRCO1 reduces free virus V. B) Best-fit models of natural HIV dynamics (without VRCO1) using data from
the RV 217 trial [23] demonstrates satisfactory fit to heterogeneous viral-load kinetics. C) Density plots of distributions of 6 estimated parameters (lines-medians, c-
cells, d-days). 8 parameter values were set constant based on past studies; see Table 2 for constant values and initial guesses for estimated parameters. D) Calculated
values of the basic reproductive number R, the average number of new infected cells generated due to a single infected cell in a fully susceptible population. E) A
representative model simulation using mean values from density plots in C recapitulates features of host-cell dynamics during HIV primary infection. Susceptible
cells decrease by approximately 200 cells/uL and reconstitute by viral set-point. Latently infected cells are generated within the first week of infection and contain
plausible levels of total HIV DNA (unproductively infectious latent provirus I, _ 1, , - v) and replication competent provirus (productively infectious latent provirus
I_1 p-p). Adaptive immune cells E become significant around the time of peak viral load (approximately 10 days after first positive) and adjust viral load set-point.

https://doi.org/10.1371/journal.pcbi.1007626.9002

effects killing active cells rapidly and latent cells having a long (44 month) half-life. Only active,
productively infectious cells produce virus (with rate 7). An adaptive immune compartment E
is recruited at rate w depending on the total number of infected cells, but this recruitment is
limited by a saturation constant Esq. Adaptive immune cells kill actively infected cells with rate
x and immunity wanes with rate 8. Virus is naturally cleared with rate y. When VRCO1 is
present, free virus is reduced based on the concentration and neutralization potency of VRCO01
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Table 1. Sensitivity analysis variables to assess deviations from the initial model predictions.

Variable | Range |Name: definition

¢ [1,10°] | potency reduction factor: fold-reduction in concentration and/or fold-increase in in vivo IC50
f [0,1] resistant fraction: fraction of circulating isolates with IC50>50 ug/mL
Ao [1,20] | founder cells: the initial number of infected cells
Xs50 [50, maximum [C50: the true maximum IC50 for resistant variants (replaces the detection
10] threshold 50 pg/mL)

https://doi.org/10.1371/journal.pcbi.1007626.t001

against the virus. We focus on natural infection initially and include the model for VRC01
neutralization in the following sections.

We parameterized the natural viral dynamics model using human primary infection viral
loads from the RV 217 study [23]. The model achieved satisfactory fit (matching peaks, times-
to-peak, set-points) to heterogeneous viral load trajectories across all study participants (see
Fig 2B). The complete model is not identifiable, so certain parameters were fixed at values
based on experimental measurements and past modeling. In particular, latent reservoir param-
eters were estimated from separate data sources. Table 1 contains all fixed values and initial
guesses for estimated parameters. Importantly, this approach does not aim to define the abso-
lute values of viral dynamic parameters, but rather to identify plausible sets of parameters that
recapitulate the natural viral dynamics in humans so that these dynamical systems can be stud-
ied under the perturbative force of passive immunization with VRCO1.

Estimated parameters included the death rate of susceptible cells Js, the probability of pro-
ductively infectious provirus 7 given infection, and several adaptive immune parameters: the
killing rate of the adaptive immune compartment k;, the removal rate of the adaptive immune
compartment Jg (inclusive of death and exhaustion), the half-maximal saturation constant of
the adaptive response Esy, and the recruitment rate of the adaptive response w. Population dis-
tributions for each of the 6 estimated parameters are organized into density plots showing fits
are achieved with relatively narrow parameter ranges across participants (Fig 2C).

We combined estimated parameters with fixed parameters to calculate an approximate
basic reproductive number R, (see Methods). This value provides the average number of
infected cells generated by a single infected cell at the start of infection [31]. If this value is
below 1, viral production cannot overcome clearance, and infected cells eventually disappear.
Our estimates (Fig 2D) are different from previous estimates [32] as a consequence of using a
differently structured model.

Beyond the quantitative fitting procedure, the average parameter values generated several
semi-quantitative predictions that were consistent with existing data (Fig 2E). Initial suscepti-
ble cell concentrations were approximately 1/4 of typical CD4+ T cell counts in humans, agree-
ing with observations that not all CD4+ T cells are permissive for HIV replication [33, 34].
These cells were depleted by roughly 200 cells/uL, roughly agreeing with losses in total CD4+
T cell counts [23]. Soon after detection, numbers of latently infected cells agreed with previous
measurements [35, 36] both in magnitude (a total of approximately 100 infected cells per mil-
lion CD4+ T cells) and in relative proportions of replication competent provirus (approxi-
mately 1 in 100 latently infected cells). The relative timing and magnitude of the adaptive
immune response coarsely matched experimental observations: our modeled adaptive
immune compartment rose several orders of magnitude within 2 weeks following first positive
viral load; further, by viral set-point the adaptive immunity has saturated and the infected cell
death due to adaptive immunity was comparable to the infected cell death due to cytopathic
effects [37-39]—as calculated using the ratio of kE/(xE+ 6;).
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The initial model predicts excellent VRCO1 protection against HIV
acquisition throughout the AMP dosing interval

To predict VRCO1 impact on viral dynamics in the dosing arms of the AMP studies, we incor-
porated a common PK/PD approach into our viral dynamics model.

As documented by two phase 1 trials studying the pharmacokinetic (PK) properties of
VRCO1 [24, 40], the clearance of VRCO1 from serum is bi-phasic with an initial rapid distribu-
tion phase and a prolonged secondary elimination phase having a terminal half life of roughly
2 weeks. For simple integration with the viral dynamics model, we modeled the VRC01 PK as

V() = y1eiklt + erikzt (1)

where ), + )/, is the infused VRCO1 concentration (ug/mL of VRCO1), and k; and k; are the
distribution and elimination rates (per day). Our simplified PK model provided excellent fit to
the data and best-fit parameters from all individual fits were consistent (S1 Fig).

We also retrieved in vitro pharmacodynamic (PD) data from the 47 studies containing
HIV/VRCO1 neutralization data hosted in the LANL CATNAP database [25] (S2 Fig). A logis-
tic, or ‘Hill’, function was used to model the fraction of virus neutralized (bound) over contin-
uous VRCO1 concentrations (see Methods for derivation). We define the neutralized (or
bound) fraction at any time ¢ after a VRCO1 infusion as

10501 "]

v(t) = [1+{y(t)}] ; (2)
so that when the VRCO1 concentration is much above the 50% inhibitory concentration
(IC50) all virus is neutralized Y(¢) > IC50, v — 1, and when )(¢) < IC50, v — 0 and no
virus is neutralized. Note, taking a logarithm of this value (logv()) admits the instantaneous
inhibitory potential (IIP), previously used to calculate the efficacy of antiretroviral therapy
[41]. Using Eq 2 and IC50 and IC80 data from S2A Fig we computed each Hill slope h. The
values of h centered around h ~ 1 (S2A Fig), in agreement with previous results [42, 43]).

We simulated PK curves and PD curves separately (Fig 3A & 3B). The lowest concentra-
tions found in simulated AMP interval PK models were roughly 1 yg/mL (Fig 3A). In compar-
ison, while there are some individual curves with higher IC50s, the median PD curve
suggested most PD parameter sets would have an IC50 above 1 yg/mL (thick black line in Fig
3B). By combining these models (cartoon representation in Fig 3C) we simulated 1000 exam-
ples (Fig 3D) to demonstrate the range of expected neutralization given exposures to different
CATNAP strains at different times following a VRCO1 infusion (25 random examples illus-
trated to avoid over-plotting).

Next, we modified the viral dynamics to include a reduction in free virus

v, = VIL - ()] 3)

so that as neutralized fraction increases, virus decreases. The approximate analytical expression
for the basic reproductive number

Ry(t) = Ry[1 = v(1)], (4)

now can be used to coarsely model an exposure at some time ¢ following an infusion with
VRCO1 (Fig 3E). By combining parameter values from the natural infection model fitting (Fig
2B & 2C) inserted into Eq 17 with the variety of PK/PD values inserted into Eqs 1 and 2, we
calculated 300 possible combinations for R, (t). Many parameter sets achieved complete pro-
tection (R,(¢) < 1,Vt), but certain parameter sets permitted infection within the first weeks
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Fig 3. The serum PK and in vitro PD provide an initial estimate for AMP protection. A) Modeled PK kinetics using estimates from S1C Fig and Eq 1. B) Modeled PD
dose-response curves using data from S2A Fig and Eq 2. C) Illustration of the modeling framework: a single PK concentration kinetic curve (}/,) is combined with a
single static PD neutralization (IC50, h) to model individual neutralization at some time post infusion (Eq 3). D) 1000 simulations of neutralization during an AMP
dosing interval were performed to calculate average quantities (plotted as dashed lines). 25 randomly drawn examples are plotted as lighter lines. E) Modeling the
reproductive number R, modulated by VRCO1 neutralization given an exposure at some time. Each PK/PD curve is rescaled by a single reproductive number (Fig 2, Eq
4). If exposure occurs when R (t) < 1 (threshold highlighted by thin black line), protection from infection is likely. Some parameter ranges allow for breakthrough
infections, typically late in the dosing interval and in the lower dose arm (10 mg/kg, teal). F) The fraction of simulations having R, (f) > 1 over time demonstrates that in

vitro potency measurements and serum concentrations predict excellent prevention efficacy. In all simulations thick dashed lines indicate median values and colors
indicate study arm.

https://doi.org/10.1371/journal.pchi.1007626.g003

after infusion (Fig 3E). If a functional exposure occurs at time t when R (¢) < 1, that individ-
ual is likely to be protected. We use the fraction of simulations where R (¢) > 1 (thick dashed
lines) to estimate protection probability (Fig 3F. These values remained above 75% in both
arms even at the end of the dosing interval. We emphasize that these initial model results use
serum PK and in vitro PD parameters, very likely overestimating protection in the real trials.

Simulated clinical trials using the initial model predict high prevention
efficacy

To study further characteristics of protection including breakthrough viral loads, we adopted a
stochastic formulation to study the initial model in a full AMP simulated trial. This model sim-
ulates a single infected cell introduced into a discrete number of susceptible cells. The proba-
bility of each new cellular infection, viral production, etc. is now considered a stochastic event
that occurs with an average rate determined from the deterministic model (See Methods).
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Importantly, this allows for extinction (viral clearance) after exposure in the context of bNAbs.
As part of model validation, we verified that the first positive after exposure in the placebo arm
fell into empirical windows of 7-10 days [44, 45], suggesting the parameterization and stochas-
tic simulator are reasonably representative of early infection. To model bNAb prevention, we
required a precise definition for the initial conditions of the simulation. In non-human pri-
mate studies, systemic virus is found before clearance with bNAbs, suggesting that bNAbs do
not completely prevent infection of all cells [13, 15]. Therefore, we defined ‘functional expo-
sures’ as those for which virus passes the mucosal barrier and infects at least one susceptible
CD4+ T cell. Defined this way, functional exposures have a >90% chance of causing infection
in the natural stochastic model. We used the incidence rates and population sizes of the AMP
cohorts to estimate the expected number of functional exposures in each study arm. For exam-
ple, a 3% incidence rate per year (as estimated for for the Americas and Europe [17]) with a
500 individual trial for 80 weeks admits approximately 40 functional exposures (Fig 4A). We
assumed incidence was identical in each dosing arm and simulated exposures as uniform over
time, drawing the parameters for each exposure from a set of viral dynamic (Fig 2C), PK (S1C
Fig), and PD (S2A Fig) parameters.

In a representative simulated trial example with the initial model (Fig 4), VRCO01 had a
strong effect on total prevention efficacy and a dose-dependent prevention efficacy was
observed: PE = 1 — 6/36, or 83%, in the low (10 mg/kg) dose arm and PE = 1 — 3/36, or 92%, in
the high (30 mg/kg) dose arm, respectively (see Eq 20). The approach of viral dynamics also
highlights a possible challenge for AMP. In theory, some individuals will receive another dose
of VRCOLI after infection but before first positive, thereby suppressing viral load and presenting
a complicated scenario for confirmatory measurements. In some simulations we observed
undetectable viral loads and latently infected cells, representing the possibility for occult
infection.

A framework to detect the mechanistic causes of deviations from the initial
model predictions

There are several reasons why true prevention efficacy in the AMP studies might be lower than
the estimated PE from initial model simulations. Therefore, we studied four mechanistic
hypotheses for reduced prevention efficacy to determine whether deviations from the initial
model could be inferred from characteristics of breakthrough infections (summary in

Table 1).

First, concentration of VRCOI at sites of HIV exposure may be lower than concentrations
measured in serum. Additionally, in vivo neutralization in mucosa might theoretically be
reduced due to anti-idiotype antibodies or competitive exclusion [46]. Both mechanisms rep-
resent a global reduction in VRCO1 neutralizing impact based on deviations from serum PK
and/or in vitro IC50 [27]. To study these mechanisms, we introduce the ‘potency reduction
factor’ ¢. Mathematically, this parameter decreases the ratio of VRCO1 concentration to IC50,
multiplying the term 52
has been identified between in vitro IC50 and prevention efficacy in non-human primate stud-
ies [27, 28] and two studies demonstrated that VRCO01 in human serum retained its neutraliza-
tion ability [40, 47]. Based on evidence from non-human primate studies, in which antibody

x ¢. This simple scaling is plausible because a significant correlation

concentrations in the vaginal fluid were 1-2 orders of magnitude lower than serum concentra-
tions [26], we varied the potency reduction from 1 (no change from initial model) to 1000.

Second, circulating strains in the AMP trials may not be well-described by the laboratory
isolates collected in the CATNAP database. In other words, VRC01 may have less breadth
against isolates in the AMP study than those in the database. To study this impact, we
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Fig 4. A representative AMP simulation using the initial model (serum PK and in vitro PD). For each dosing arm
in the trial (placebo, 10 mg/kg, and 30 mg/kg, respectively), we simulated 40 functional exposures (based on a 3%
incidence rate per year) and plotted viral load data: colored solid lines are simulated viral loads and open circles
represent viral load measurements given the sampling frequency of the AMP trials. Dashed black line indicates a limit
of detection at 30 copies/mL. Each exposure is initialized with a single infected cell carrying a randomly drawn viral
strain (IC50) and a VRCO1 concentration which follows randomly drawn participant PK kinetics. To normalize
correctly, we account for the fact that in the placebo model (A), some functionally exposed participants naturally clear
the infection due to variability in host immune parameters and stochastic simulation. Many functional exposures are
blocked by VRCO1. The trial admits excellent prevention efficacy: PE = 1 — 6/36, or 83%, in B) the low dose arm and
PE =1 - 3/36, or 92%, in C) the high dose arm.

https://doi.org/10.1371/journal.pcbi.1007626.9004

parameterized a distribution containing sensitive and resistant strains. While recognizing
resistance is a continuum, we chose sensitive and resistant strains as those with IC50 <1 and
>50 pug/mL, respectively. This definition alludes to the definition of breadth as the fraction of
viruses with an IC50 above the detection threshold [48]. We then chose a bi-modal distribu-
tion to parameterize exposing sequences. A fraction f of IC50s were drawn from a lognormal
distribution centered on IC50 = 10° ug/mL with variance 1 log and the remaining 1 — f were
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drawn from a lognormal distribution centered on IC50 = 10> ug/mL with variance 1 log. We
varied the ‘resistant fraction’ f from 0 (no resistant strains) to 1 (all resistant). The values for
distribution modes allow for edge cases where at the low end f = 0, most sequences are neutral-
ized easily, and at the high end most sequences can infect over the entire dosing window
(given initial infusion concentrations usually less than 10> ug/mL.

Third, viral inoculum size [49] and/or transmission-site anatomy [50] appears to affect the
number of founder viruses. To address the possibility that functional exposures with more
than one infected cell could overwhelm antibody protection and reduce stochastic burn-outs,
we varied the number of active, productively infected ‘founder cells’ I, p(0), shorthanded as A,
from 1-20.

Lastly, available in vitro data have a detection threshold and do not quantify IC50 values
above 50 yg/mL. Thus, it is unclear exactly how much VRCO01 would be needed to neutralize
these strains. In addition, ‘incomplete neutralization’ has been documented [51, 52]. To model
incomplete neutralization, we introduced x5, to represent the maximum IC50, which we var-
ied from the detection threshold of 50 yg/mL up to 10,000 yg/mL.

Global sensitivity analyses of simulated clinical trials were employed to test the impact of
the sensitivity analysis variables on clinical outcomes. 100 parameter combinations were cre-
ated using Latin hypercube sampling (LHS) from the ranges of the four sensitivity analysis
parameters (Table 1). For each dosing arm, 100 functional exposures were simulated and five
outcomes were recorded. Variable 1 is prevention efficacy (PE). Variables 2 and 3 are the
mean and standard deviation of the first positive viral load in all detected breakthrough infec-
tions. The last variables (4 and 5) are the mean and standard deviation IC50s of breakthrough
viruses as would be measured by an in vitro assay. These outcomes are referred to as measur-
able because they will be available in a post-hoc fashion from the AMP trials [17].

By correlating the values of the four sensitivity analysis variables against the five measurable
trial outcomes Fig 5A & 5B, we observed several important relationships. The variable corre-
lated most strongly to prevention efficacy was the resistant fraction f. The standard deviation
of breakthrough IC50s was most correlated with the potency reduction factor ¢. Both resistant
fraction and potency reduction factor impacted the mean IC50 of breakthrough strains com-
parably. The maximum IC50 x5, and the initial number of infected cells A, did not correlate
strongly with any clinical outcomes.

To help interpret the impact of potency reduction factor and resistant fraction, we exam-
ined all breakthrough IC50s in a given trial (S3 Fig). Decreased potency allowed a wider distri-
bution of strains (inclusive of lower sensitivity) to infect: thus the variability of breakthrough
IC50 increased. Raising the resistant fraction increased the mean IC50 of breakthrough strains
and decreased the variability.

A clinical-trial regression model (CTRM) accurately distinguishes partial
efficacy due to reduced global potency vs. insufficient breadth against
circulating strains

Based on the finding that outcomes were distinctly correlated with different biological vari-
ables (Fig 5), we developed a framework to assess the reverse correlation. That is, we sought to
use the measurable trial outcomes to distinguish which unobservable biological variable was
most-responsible for partial trial efficacy.

Using the global sensitivity analysis results, we performed linear multivariate multiple
regression [53] using the measurable outcomes as the predictor variables and the sensitivity
analysis variables as the dependent variables. Using only the five measurable outcomes of each
trial, we assessed our prediction of potency reduction and resistant fraction using a cross-
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Fig 5. Global sensitivity analysis links unknown biological variables to measurable trial outcomes. A) Results from
100 simulations of each dosing arm correlating sensitivity analysis variables (see Table 1 for definitions) against
measurable trial outcomes. For each simulation, a value of each sensitivity analysis variable was chosen from a LHS
sample. 100 functional exposures were simulated in each trial. Correlations agree in both dosing arms—teal 10 mg/kg,
tan 30 mg/kg. B) Absolute values of Pearson correlation coefficients (marker shape indicates dosing arm) show that
different variables correlate more strongly with different outcomes. Potency reduction factor and resistant fraction are
the most strongly correlated overall, but each correlates more strongly with a different sensitivity analysis variable:
potency reduction factor most strongly correlates with the standard deviation of breakthrough virus IC50, whereas
resistant fraction correlates most strongly with prevention efficacy.

https://doi.org/10.1371/journal.pcbi.1007626.9005
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Fig 6. A clinical trial regression model (CTRM) uses trial outcomes to infer potency reduction and resistant fraction. We simulated 100 trials in each
dose arm, and performed 5-fold cross validation. We used sets of 40 randomly selected trials to train the CTRM, and then tested the CTRM to predict
potency reduction and resistant fraction only using measurable trial outcomes from 10 different randomly selected trials. Errors were then averaged
across 5 replicates. A) True vs predicted values for both variables. B) Total error (true—predicted) indicates reasonably unbiased estimates. C) Relative
error (|true—predicted|/true x 100) indicates estimation error is typically at or below 50%. D) Heat maps indicate no single variable distinguishes reduced
potency from increased resistance. E) Illustration of sequential inference using trial outcomes using an example simulation with a certain potency
reduction and resistant fraction (¢ = 100, f= 0.4, red dot). The inference proceeds by applying trial outcomes ¢; sequentially to filter out unlikely
simulated parameter combinations. Darker boxes indicate higher likelihood of a certain parameter combination. First positive viral dynamic outcomes
(mean c; and std dev ¢,) do not discriminate strongly. However, by filtering by prevention efficacy ¢; and IC50 outcomes (mean ¢, and std dev cs), the
true value is identified correctly.

https://doi.org/10.1371/journal.pcbi.1007626.9006

validation train/predict scheme. We randomly chose 40 simulations to train, and 10 to predict.
This was repeated 5 times and errors were averaged. Training and testing was repeated for
each dose arm. Estimates were reliably accurate (see true vs. predicted in Fig 6A). Absolute
error (true—predicted, Fig 6B) was mostly unbiased, with median values for potency reduction
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slightly below 0. Relative error (|true—predicted|/true x 100) indicates estimation error is typi-
cally at or below 50% with some outliers (Fig 6C).

To demonstrate the approach intuitively, we plotted heat-maps relating the potency reduc-
tion factor and resistant fraction to each of the five measurable outcomes (Fig 6D). No single
outcome is sufficient to identify the value of both sensitivity analysis variables. However, in
practice, by using the value of each outcome found from an example trial, we can sequentially
constrain the possibilities for the two values, until a reasonable estimate is developed. In Fig
6E, we perform this process by beginning with a simulation with a certain potency reduction
and resistant fraction (¢ = 100, f = 0.4, red dot). This value of potency reduction was chosen
because it is plausible based on nonhuman primate bNAD concentration studies [26]. Then,
using each heat map from Fig 6D, we calculated the percent error error where more precise
estimates are represented by darker shades. Clinical outcomes c; are applied sequentially. Viral
dynamic outcomes (first positive mean c¢; and std dev ¢,) rule out some parameter combina-
tions, but are not very discriminatory. However, prevention efficacy ¢; and IC50 outcomes
(mean ¢4 and std dev ¢s) strongly constrain the possible parameter combinations. Gray shades
indicate the likelihood of parameter combinations Fig 6B & 6C. After all 5 outcomes have been
used to filter out unlikely parameter combinations, the darkest square correctly identifies the
true value.

Discussion

To aid the interpretation of the AMP trials, we developed a mathematical modeling framework
to simulate the clinical trials. Our model is informed by numerous conceptual (e.g., Refs. [54-
56]) and mathematical (e.g., Refs. [57-60]) models of viral dynamics during early HIV infec-
tion. It satisfies several important criteria relevant to simulating the AMP trials by recapitulat-
ing diverse HIV viral load dynamics at the individual and population levels. Further, it
qualitatively agrees with measurements of host-cell levels including total infected cells, latently
infected cells (containing both replication competent and total HIV DNA levels), and the rela-
tive impact and timing of adaptive immunity. We integrated a combined PK/PD model of
VRCO1 and developed both an analytical approximation and a full stochastic simulation of the
prevention efficacy of VRCO01 in the AMP studies. Using available serum PK and in vitro PD
values, we predicted high prevention efficacy comparable to previous oral PrEP studies [3].

However, this initial model may not directly translate to the in vivo activity of VRCOI in the
AMP studies. Thus, instead of attempting to predict trial outcomes based on unknown biol-
ogy, we developed a clinical trial regression model (CTRM) framework to infer the unknown
biology and interpret the mechanistic causes of a partially protective bNAb. Our approach dis-
tinguishes breadth from potency, two concepts that are interrelated. We define potency as a
global reduction in neutralization against all challenge viruses—in other words, a scaling of the
average IC50, whereas breadth is a characteristic of a bNAD against the circulating strains—in
other words, a spread of the IC50s. When breadth increases, the bNAb becomes better at neu-
tralizing some viruses. When potency increases, it becomes better at neutralizing all viruses.
Potency reduction could be due to decreased VRCO1 concentration at relevant sites and/or
decreased in vivo neutralization activity of VRCO1. Breadth reduction could be due to a popu-
lation of circulating viruses specifically resistant to VRCO1.

We proceed to highlight how measured quantities from the AMP studies can be combined
to distinguish between breadth and potency, inferring mechanistic biology and creating a
pathway for optimizing sequel trials. Specifically, simulated trials with weak breadth, i.e. the
circulating population contains many very resistant viruses (IC50 >50ug/mL), lead to low pre-
ventative efficacy with a high mean and low standard deviation of breakthrough virus IC50.
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Simulated trials with weak in vivo potency, i.e. breakthrough is possible even though in vitro
measurements of IC50s are below infused concentrations, lead to a lower mean and high stan-
dard deviation of breakthrough virus IC50 (summary in Fig 6D).

There are several important limitations to our approach. To simplify trial logistics, we
assume perfect adherence to visit schedule. Further, while we implicitly assume viral infectivity
and transmission biology is equivalent in each trial arm; we do not make predictions across tri-
als where cohort makeup and distribution of virus clades are different.

In the stochastic implementation of the model, we assume that VRCO1 prevents expansion
after infection of a single cell, rather than inducing complete protection against infection of
any cells. This is based on detailed nonhuman primate studies where bNAb-mediated protec-
tion involved systemic measurable virus in tissue compartments [13, 15]. No additional time-
scale for mucosal passage was built in to these simulations, but that timescale is typically on the
order of hours, which would only minimally shift the present results [61]. In previous model-
ing of bNAb prevention [43], authors determined a per-virion probability of infection. Our
approach mirrors this in assigning an effective probability of infection per infected cell. Yet,
our viral dynamics approach is distinct because it defines a non-linear and time-varying rela-
tionship between bNAD levels and infection probability.

We only model how VRCO1 can protect against ‘functional exposures’, those where at least
1 cell is infected in the new host. The regime in which all virions in an exposure are completely
neutralized is indirectly captured by our model as cases where R, (t) < 1. As defined, such
functional exposures typically proceed to viremia naturally. This is important because our viral
dynamic parameter estimates are necessarily from individuals who were naturally infected,
which may not represent all HIV exposures (i.e. estimates are conditional on infection [59]).
As a consequence, our model does not account for the rare (<1%) per-coital transmission
probability of HIV in the natural setting ([56, 62]). Further, HIV incidence rates have been
estimated in these trial populations, and we could calculate a fairly reliable estimate of the
number of functional exposures expected in each arm.

We assume VRCOI reduces free virus based upon multiple studies showing infusion of
VRCO1 during chronic infection causes viral load to decay at a rate comparable to the decay
following administration of ART [10, 63]. It’s possible these data are not well-enough resolved,
and that VRCO1 does increase the infected cell death rate via antibody-dependent cellular cyto-
toxicity (ADCC) [9]. For instance, the partially effective RV144 Thai trial suggested ADCC
could affect protection [64], but other studies have shown minor ADCC impact [5]. If ADCC
enhances protection, our model predictions will represent a lower (rather than upper) bound-
ary on prevention efficacy.

Another limitation is that we do not explicitly model the genetic diversity of HIV. There-
fore, we cannot address HIV escape during infection. Within-host escape was documented
when VRCO01 was infused during chronic HIV infection [63]. However, primary infection may
be different. Founder virus populations are likely to be much smaller in absolute size and the
reduced genetic diversity makes similar rapid escape unlikely. On the other hand, if there are
multiple founder viruses, immediate selection for a more resistant variant is theoretically pos-
sible. If the AMP trials result in substantial multi-strain infections, our model will be updated
to accommodate. For instance, it might be possible to disentangle multiple founder infections
based on an updated model that replicates observed variability in set-point due to multiple
founders [65].

Our main results on mechanistic inference are applicable for other mechanistic models
because specific viral dynamics are not essential to discrimination between mechanisms (see
Fig 6E). Most importantly, as long as there is a monotonic relationship between infection
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probability and bNAb concentration, PE, mean IC50 and standard deviation of IC50 will
behave qualitatively as in Fig 5A), making some inference possible.

In summary, we developed a framework for simulating HIV prevention trials with neutral-
izing antibodies. This framework allows direct combination of viral dynamics, antibody phar-
macokinetics, and antibody pharmacodynamics—including estimates of ranges of parameters
for all. Our clinical trial regression model (CTRM) was able to differentiate the two most plau-
sible drivers of breakthrough infection in a simulated partially protective trial: a global reduc-
tion from serum concentrations and in vitro predicted neutralization vs. insufficient breadth
against circulating strains. This approach could help prioritize future development strategies
for neutralizing antibodies. If breakthrough viruses possess a wide spectrum of IC50s, then
future studies will need to raise in vivo potency, by enhancing distribution to infection sites
and/or mitigating decreases in in vivo binding. However, if breakthrough strains possess simi-
lar and high IC50s, future trials will need to enhance breadth to accommodate circulating
strains.

Materials and methods
Ethics statement

This paper uses de-identified data obtained previously and no new observations requiring
patient consent or institutional review board approval have been performed.

Data and computational code availability

Code and data to replicate all analyses are hosted at https://github.com/dbrvs/AMP.

Mechanistic mathematical model for primary HIV infection in the context
of bNAD intervention

We designed a mathematical model to describe primary HIV infection in the context of pro-
tection with broadly neutralizing antibodies (bNAbs). Our model (Fig 2A) has evolved from
the canonical models of viral dynamics [66-68] and was developed previously to model SHIV
kinetics [22].

The model contains susceptible cells (S; likely CCR5+/CD4+ T cells), which are produced
constantly with rate g and are removed with rate Js. Free virus Vyinfects these cells and gener-
ates infected cells I; ,. These cells have a cell state and phenotype (subscript s and p). We use a
vector notation to express the four possible cell states, that is I, , = [I4 p, 14,05 I1,p» I, u), Where
active/latent is denoted by A, L and productive/unproductive is denoted by P, U. The infectiv-
ity and subsequent designation of cell state and phenotype is given by B, , = B x [7(1 - 1),
(1-17)(1=4), 7, (1 = 7)A]. Only productively infected cells produce virus, so 7, = [, 0, 0, 0].
Both productive and unproductive infected cells die rapidly based on viral cytopathic effects
and/or bystander killing [69, 70]. Latently infected cells persist with extremely long half-lives
[71], but for this model we ignore reactivation from latency because it is rare and thus negligi-
ble during primary infection. Therefore, , = [0,,0,,0,,0,].

The adaptive immune system is modeled as an additional effector cell compartment E,
which is inclusive of CD8+ T cells and other cells [72, 73]. Effector cells help control viral repli-
cation by killing all non-latent cells with rate «; , = [x; «;, 0, 0]. The recruitment rate of new
adaptive immunity (w;, = [w, w, 0, 0]) governs this recruitment and a saturation constant Es
limits recruitment. Effector cells are naturally produced with the rate g to mimic the
extremely low precursor frequency [74] and are also naturally removed (through death or
exhaustion) with rate .

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007626  February 21, 2020 15/27


https://github.com/dbrvs/AMP
https://doi.org/10.1371/journal.pcbi.1007626

O PLOS

COMPUTATIONAL

BIOLOGY

Modeling breakthrough mechanisms in the HIV Antibody Mediated Prevention (AMP) trials

The model is expressed as ordinary differential equations,
S = o — 5,8 — BSV;
I,,=B,SV,—05, I,—x,I,E

sp Lp~s:p spsp
E + I E 5.E ®)
=otw, I,
E s.p s.pE _|_ E50 E
V=n,I, —yV—pSV,

spUsp

where time derivatives are denoted by the overdot, 8 = X, B, and a - b denotes the inner
product. We incorporate the effect of VRCOI into the model above by adjusting the fraction of
free virus V= V[1 — v(¢)] where v(f) is the fraction neutralized VRCO01 (described below).

Natural primary infection viral load data

Human primary infection viral load data were collected during the RV217 study; complete
details are found in Ref. [23]. The study followed 2276 high-risk volunteers, and participants
having detectable HIV-1 were followed such that plasma HIV-1 RNA could be quantitated
twice weekly. For modeling purposes, we used data from 30 individuals from Thailand and
Uganda whose viral load was observed at least 5 times, who had a single viral load measure-
ment above 10° copies/mL and had viral load measurements for viremia for at least 10 weeks
following first positive viral load.

Estimation of model parameters for natural HIV primary infection

We fit the model to the RV217 viral load data using SciPy’s opt imi ze package, which uses a
least-squares Levenberg-Marquardt approach equivalent to maximum likelihood with a nor-
mally distributed variance for the data. 6 out of 14 parameters are fit, with the remaining values
fixed (see Table 2 for fixed values and initial guess of fit parameters).

A more complete discussion of the identification of parameter values is provided in a previ-
ous work using a similar model [22]. Briefly, viral clearance rate y was estimated from a

Table 2. Summary of model parameters found in the model, Eq 5. Parameters in () indicate initial values for estimation; others were held fixed.

Parameter | Value Meaning Dimensions Reference
Constant
ag | 70 Susceptible cell production rate cells uL " 'day ™ [75]
7| 0.05 Productively infectious probability unitless [69]
5,108 Infected cell death rate day’1 [76]
7| 5x10* Viral production rate virions cell 'day " [77]
v |23 Viral clearance rate day’1 [78]
ap | 107 Adaptive immunity production rate cells yL " 'day ™" [74]
Al 107 Latently infected probability unitless [79]
0| 52x107* Clearance rate of latently infected cells day’1 [80]
Fit
Bl (0™ Total viral infectivity ulL virions’lday’] [75]
Js | (0.2) Susceptible cell removal rate day™ [75]
Jg | (0.002) Adaptive immunity removal rate day_1 [81]
x| (0.3) Adaptive immunity killing rate uL day cells™! [82]
w | (1.6) Adaptive immunity recruitment rate uL day cells™" [81]
Esq | (250) Adaptive immunity limiting concentration cells yL’l [83]
https://doi.org/10.1371/journal.pcbi.1007626.1002
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human apheresis experiment. Infected cell death rate ; was estimated from human viral load
decay data after initiation of ART. Viral production was estimated from a single cycle SIV
experiment in macaques. Productive virus fraction was estimated in ex vivo cultures of human
tonsil tissue. Susceptible cell rates (o and 85) were estimated from viral load data in a human
treatment interruption trial. Importantly, that model has the same structure as our own. Adap-
tive immune rates are difficult to estimate because the model does not specify a specific cell
phenotype. Human experiments have estimated anti-HIV T cell precursor frequencies, which
we use to estimate . in vivo microscopy was used to estimate CD8+ T cell killing rates, which
we use to estimate k. Maximal fractions of virus-specific CD8+ T cells in mouse LCMV experi-
ments are 20-70%, which we combine with typical human CD8+ T cell concentrations to esti-
mate Esq. The recruitment and death rates of the adaptive response are estimated from a T cell
proliferation study in HIV-infected humans.

The rates governing susceptible and effector cells are the least well-understood, as well
as the source (in our model) of the large variation in viral set-point equilibrium. Thus when
fit, these values vary the most across participants. For instance, see the ranges of values of ¥
and &g shown in Fig 4C. There are some correlations among parameters and for the pur-
poses of this work we do not claim to have identified absolute values. Rather, we have
developed a variety of parameter sets for viral dynamics to be adjusted in the presence of
VRCOL1.

For the deterministic model fitting, the initial viral load V(t = 0) is specified at a 30 copies/
mL detection limit. Susceptible cells and adaptive immunity are initialized to equilibrium val-
ues, S(0) = as/8s, which assumes no real T cell depletion before first positive, and E(0) = /5,
which assumes no HIV-specific immune response before first positive. The infected cells initial
conditions are calculated using a quasi-static equilibrium so that the total number of infected
cells is I(0) = V(0)y/7. Then, we use the proportions to calculate I, , = I(0)8; /8.

Modeling VRCO01 pharmacokinetics (PK)

A detailed pharmacokinetic (PK) model for VRC01 was published by Huang et al. [24]. Here
we adapt a simpler analytical formulation so that the concentration of VRCO01 at any time ¢
after a dose can be expressed as

V(t) = Vet + Pye. (6)

The terminal half-life of VRCO01 can be calculated using the second phase decay constant
t12 = In(2)/k,.

Using SciPy’s optimize package, we estimated all four parameters based on data from
HVTN 104 in which HIV-uninfected adults received multiple-dose intravenous VRCO1 at 10
and 30 mg/kg every 4 or 8 weeks. Each individual (n = 12) received 3 infusions (S1A Fig). We
used data for each infusion to estimate 32 and 31 parameter sets for each dose, respectively.
S1B Fig shows all fits, and S1C Fig the estimated parameters. These parameter sets could be
used to simulate continuous VRCO1 trajectories (as in Fig 3A).

Curation of pharmacodynamic data

We use tabulated pharmacodynamic (PD) data including measurements of IC50 and IC80
from 782 viral isolates as tabulated in the LANL CATNAP database [25]. Some of these isolates
are repeated, but measurements are not identical, so we included all data. Using IC50 and
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IC80 we calculated Hill coefficients for each isolate as

__ —log(4) 7
~ log (IC50/1C80) (

In cases where both IC50 and IC80 are identical (h — o). In those cases, we set the Hill
coefficient to a randomly selected hill coefficient taken from the distribution of all other iso-
lates. Further, for these cases, the IC50 value is ‘saturated” by experimental constraints. It may
be that the virus is much more resistant, or that the real value of IC50 is much greater. Thus, in
S2A Fig, we illustrate what these distributions might look like when saturated IC50s are drawn
from a uniform distribution ranging from the saturated IC50 value up to 10> ug/mL. Further,
in Fig 3, we adjust the dose response curves to incorporate these theoretically possible resistant
strains.

In S2B Fig we illustrate all PD data across virus clades.

Modeling VRCO01 pharmacodynamics

To incorporate VRCO1 neutralization into our model, we employ a stoichiometric neutraliza-
tion model [30]. To derive this model, we assume VRCO1 creates immune complexes C, pro-
portional to the concentration of free virus Vyand the concentration of VRC01 ), given the
rate constant r as

C=ry'V, (8)

where h represents a stoichiometric factor indicating how many VRC01 molecules must be
present to neutralize a single virion. The total amount of virus V equates to the sum of the
number of immune complexes and the number of free virions, thatis V'= C + V. Writing the
fraction of bound virus as v we have the relation

wW=r(1-v)VY 9)
which can be solved for the bound fraction as

%

g g (10)

We can then solve for a useful quantity, the concentration of VRCO1 for which v = 0.5, or
the 50% inhibitory concentration IC50 = . Thus, the neutralized fraction (ranging from 0 to
1) at some time t after infusion is

W(t) = l1 + (%ﬂ 71. (11)

Plots of this quantity after drawing random values for PK an PD are shown in Fig 3D.
Then, during the stochastic viral dynamics simulation we interpret the reduction in free virus
due to neutralization

V= [1—w()]V (12)

to model the protective impact of VRCO1.
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Derivation of early infection basic reproductive number

The basic reproductive number R, defines the average number of infected cells generated by
an infected cell in a completely susceptible population. We derive an approximate basic repro-
ductive number in the context of bNAb therapy from Eq 5 by employing several approxima-
tions. First, we assume the viral dynamics are much faster than cellular dynamics so that

V 2 0 at all times and thus

nl,p

Y

V ~

(13)

Similarly, the binding of antibodies is assumed to be rapid compared to infection dynamics
such that the free virus is

nl,p

Y

V= [1—v(t)] (14)

We insert this expression into the differential equation for the active productively infected
cells so that

. nl
I, =(1=20)tBS[1 —v(t)] V’“’ — 8,1, — kI, ,E. (15)

Next, we assume that early in infection the depletion of target cells is minimal, and the
recruitment of adaptive cells has not occurred significantly. That is, we assume these cells
remain at equilibrium S = §* = a5/8s and E = E* = ag/6g. Inserting these fractions, the concen-
tration of infected cells can be factored out to leave

fup = Lo{ (1= M0 - (0] =0, 2. (16)

Dividing through by 6; + xax/Jy allows us to identify the value

R(} = (1 —l)fﬁ%E; (17)
7 (8,4 x2)

As in the ‘survival function’ approach, we can think of this quantity as the product of the
average lifespan of an active, productively infectious cell [§+ xoz/8g] ", the rate at which virus
is produced from this cell 7, the average lifespan of these virions 1/y, d) the rate at which each
virion infects susceptible cells to produce new infections Bas/Js, and the fraction of these infec-
tions that are active and productive (1 — A)7 [31].

We now define the time varying reproductive number that depends on VRCO1 concentra-
tion and exposing strain as

Ry(t) = Ry[1 = v(1)], (18)

such that the exponential solution to Eq 16 has the form
1
I,p o exp ?(Ru(t) —-1). (19)

Therefore, if an exposure occurs when R (¢) < 1, the number of active, productively infec-
tious cells decreases exponentially. Likewise, if R,(¢) > 1 the number of infected cells grows
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exponentially. This important threshold can be used to estimate the circumstances when expo-
sure will result in infection.

Modeling the infection probability during VRCO01 infusion windows using
the approximate early infection basic reproductive number

The basic reproductive number defines the stochastic extinction probability and therefore can
be used to estimate the probability of infection, 1 — 1/R, [58]. However, in our model R, (¢)
grows monotonically as VRC01 declines. Therefore, while in practice R, (¢) < 1 at exposure
typically results in extinction, extinction is not guaranteed.

Using the estimated parameters, we can calculate a range of possible values for R, (see
Fig 2C & 2D). Putting in values for v(f) based on PK/PD estimates, the value of R, (¢) is plotted
in Fig 3E. Then, to calculate the probability of infection, we calculated the fraction of simulated
trajectories at every time for which R (¢) > 1. This is plotted in Fig 3F.

Stochastic simulations of clinical trials

Using the ordinary differential equation system Eq 5, we developed a stochastic branching pro-
cess simulation inspired by previous modeling of HIV [58, 59, 84]. Our implementation in
Python, which employs the 7-leap approach [85], is publicly available. In each time interval

At =0.01 days, a Poisson number of each transition type occurs. For instance, the number of
susceptible cells grows S = S + AS where AS is a Poisson random variable P(x;At). Or, a certain
number of active productively infected cells are created, AL, , = P((1 — *)tiSV,At), which
meanwhile removes the same number of susceptible cells and a free virus. When an active pro-
ductively infectious cell dies, a poisson number of virions with mean 7 are created. Such sto-
chastic bursting has been shown to be similar to a model with continuous viral production
[84].

The stochastic implementation allows us to simulate infection beginning with a single
infected cell. Unlike the deterministic model, this approach permits burnout. Each of the initial
state variable concentrations and rates involving concentration are converted to discrete values
by multiplying by a volume. We choose this volume to be 10® 4L based on the observation that
there is approximately 1-10 L of blood in an adult human and that there are approximately 10-
100 times more T cells in lymph tissue than blood [86]. Our model for transmission is based
on several elegant non-human primate studies [13, 15, 61, 87].

We assume that most sexual exposures to HIV are non-functional. In those exposures, sex-
ual contact never results in infected cells in the recipient. This probabilistic process is not mod-
eled, though it likely is responsible for the extremely rare per-coital transmission rate in
humans [88]. Instead, we model functional exposures, defined as those in which a founder
virus has crossed the mucosa and infected at least one local target cell in the recipient. These
cells then are trafficked rapidly to lymph tissue where viral dynamics occurs.

To model the AMP trials, we assume repeated infusions of VRCO01 every 8 weeks, and HIV
viral load measurements (with detection threshold 30 copies/mL) every 4 weeks. Based on inci-
dence data (and ignoring the influence of daily oral PrEP), we estimate approximately 40 func-
tional exposures per trial arm [17]. This model does not distinguish between an individual
who is doubly exposed and two individuals singly exposed. Then, for each ‘trial” we simulated
the three dosing arms, and computed prevention efficacy (PE) compared with placebo. We use
a simplified calculation of PE using the ratio of infections that occur in a VRCO1 treatment
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arm n” to the number of infections in the placebo arm n”. That is,

nT
PE=1-". (20)
A more sophisticated estimator using a Nelson-Aalen estimator is described in [17].

Another formulation like the ‘averted infections ratio’ could be used alternatively [89]. Our
simple measure can be interpreted as the total fraction of participants at the end of the trial
that would likely have been infected but were instead protected due to VRCO1. For example, if
7 individuals were infected in the 10 mg/kg dosing arm and 39 were infected in the placebo
arm the prevention efficacy would be 1 — 7/39, quoted as PE = 82%.

Global sensitivity analysis

Using the stochastic simulator of the clinical trials, we performed global sensitivity analyses on
several key biological parameters (see Fig 5 and Table 1). For each simulated trial, we randomly
chose values of all parameters simultaneously from ranges: potency reduction factor ¢ € [1,
10°], resistant fraction f € [0, 1], maximum IC50 x5, € [50, 10*], initial number of infected
cells A, € [0, 20]. Variables covering several orders of magnitude were drawn uniformly on a
logarithmic scale. Clinical outcomes including prevention efficacy, mean and variance of first
positive viral loads, and mean and variance of breakthrough IC50s were recorded.

The resistant fraction f parameterizes a simulated distribution of IC50s. The distribution
is bi-modal with a fraction f of IC50s drawn from a lognormal distribution centered on
IC50 = 10° ug/mL with variance 1 log and the remaining 1 — f drawn from a lognormal distri-
bution centered on IC50 = 10> ug/mL with 1 log variance. We vary ffrom 0 to 1 because of
we are uncertain how minor resistant variants may manifest in a realistic exposure.

Clinical trial regression model (CTRM)

Based on the correlation between biological variables and measurable trial outcomes (Fig 5B),
we developed a multi-variate regression model that we term a clinical trial regression model
(CTRM) to estimate the sensitivity analysis variables (v;) from the five clinical outcomes (c;).
That is, for each biological variable, we identified the regression coefficients w;; from the
expression

v, = Zwijci + z; + e (21)

where each z; is a constant and e; ~ N (0, 5;) is a normally distributed error term with a certain
variance o7. The regression was accomplished using sk1learn in Python.

The CTRM approach indicates that the full stochastic trial simulations can be reasonably
well-approximated by a set of 5 regression coefficients for each sensitivity analysis variable.

Supporting information

S1 Fig. VRCO1 pharmacokinetic (PK) data and model fitting. A) VRC01 pharmacokinetic
(PK) data: n = 12 individuals for each dose (color) with 3 infusions for each individual to dem-
onstrate no meaningful accumulation occurs. B) The best-fit models to each individual partici-
pant infusion using Eq 6 in the main text. C) Estimated PK model parameters. Decay rates k;,
k, do not depend on infusion dose as expected.

(EPS)
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$2 Fig. Collected VRCO01 pharmacodynamic (PD) data. A) IC50s and IC80s collected from
the LANL CATNAP database for VRCO1 neutralization across all HIV clades. This allowed the
Hill slope to be computed with Eq 7 in the main text; the median value is & ~ 1. To deal with
saturated data where IC50 = IC80, we randomly assigned Hill slopes from non-saturated cases
and also randomly drew IC50 values from the saturated value to a theoretical maximum of 10’
ug/mL. Thus, these distributions have substantial outliers. B) All raw pharmacodynamic neu-

tralization characteristics separated by clade.
(EPS)

$3 Fig. Raw breakthrough IC50 data from 100 simulated trials with varying potency reduc-
tion factor (A) and resistant fraction (B). Potency reduction allows lower IC50 strains to
infect, thus broadening the possible IC50s that can breakthrough. Increasing resistant fraction
increases the number of breakthroughs with high IC50s.

(EPS)
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