8 research outputs found

    FORMULATION AND EVALUATION OF COLON TARGETED MATRIX TABLET USING NATURAL TREE GUMS

    Get PDF
    Objective: To develop a novel colon targeted tablet formulation using natural polysaccharides such as kondagogu gum and ghatti gum as carriers and diltiazem hydrochloride as a model drug.Methods: The polymer-drug tablets were prepared by wet granulation technique, coated with two layers viz., inulin as an inner coat followed by shellac as outer coat and evaluated for properties such as average weight, hardness and coat thickness. In vitro release studies of prepared tablets were carried out for 2 h in pH 1.2 HCl buffer, 3 h in pH 7.4 phosphate buffer and 6 h in simulated colonic fluid (SCF) in order to mimic the conditions from mouth to colon.Results: Percentage weight variation, percent friability and content of active ingredient for all the formulations were found to be well within United States Pharmacopoeia (USP) limits. Out of both the polymers, the tablets prepared with ghatti gum showed the maximum hardness of 7.1 kg/cm2. The FTIR spectra of pure diltiazem HCl and the formulation KF3 were found to be identical. From the DSC, it was evident that the melting point peak of diltiazem HCl and formulation KF3 were observed at 217.16 and 218.34 °C respectively. In vitro studies revealed that the tablets coated with shellac (2.5% w/w), prevented the drug release in stomach environment and inulin coated tablets (4% w/w) have limited the drug release in the small intestinal environment. The data obtained from in vitro drug release studies were fit into Peppas model and in all the cases the value of A was found to be more than 2, i.e., drug release by a combination of both diffusion and erosion-controlled drug release.Conclusion: The study revealed that polysaccharides as carriers and inulin and shellac as a coating material can be used effectively for colon targeting of drugs for treating local as well as systemic disorders

    INVESTIGATION OF KONDAGOGU GUM TO DEVELOP TRANSDERMAL FILM OF REPAGLINIDE

    Get PDF
     Objective: In the present study, an attempt was made to develop polymeric blend transdermal patch of repaglinide using hydroxypropyl methyl cellulose (HPMC) K4M and kondagogu gum.Methods: A series of repaglinide drug-incorporated HPMC K4M-kondagogu gum matrix films were prepared by solvent casting method. The prepared transdermal films were evaluated for various parameters such as thickness, tensile strength, folding endurance, % elongation, % moisture content, % moisture uptake, % drug content, in vitro drug release, and drug excipient compatibility.Results: The Fourier-transform infrared spectra of the pure drug as well as drug-incorporated formulation indicated that no chemical interaction occurred between the drug and the polymers used. Differential scanning calorimetry thermograms of the pure drug and prepared formulation indicated that the drug has dispersed in micron level in the prepared films. In vitro release study data of prepared formulations were fitted into various mathematical models, and the best-fit model was found to be Higuchi model.Conclusion: Among all the formulations studied, the formulation F4 was found to be an optimized composition for efficient transdermal delivery of repaglinide for 24 h study period. Stability studies of the drug formulations concluded that the drug was stable in the optimized formulation for the study period

    Improved dissolution and micromeritic properties of naproxen from spherical agglomerates: preparation, in vitro and in vivo characterization

    Get PDF
    Naproxen, an anti-inflammatory drug, exhibits poor aqueous solubility, which limits the pharmacological effects. The present work was carried out to study the effect of agglomeration on micromeritic properties and dissolution. Naproxen agglomerates were prepared by using a three solvents system composed of acetone (good solvent), water (non-solvent) and dichloromethane (bridging liquid). Differential Scanning Calorimetry (DSC) results showed no change in the drug after crystallization process. X-Ray Powder Diffraction (XRPD) studies showed the sharp peaks are present in the diffractograms of spherical agglomerates with minor reduction in height of the peaks. The residual solvents are largely below the tolerated limits in the agglomerates. Scanning Electronic Microscopy (SEM) studies showed that agglomerates were spherical in structure and formed by cluster of small crystals. The agglomerates exhibited improved solubility, dissolution rate and micromeritic properties compared to pure drug. Anti-inflammatory studies were conducted in Wistar strain male albino rats and naproxen agglomerates showed more significant activity than the pure drug.<br>Naproxeno, fármaco anti-inflamatório, apresenta baixa solubilidade em água, o que limita os efeitos farmacológicos. O presente trabalho foi realizado para estudar o efeito da aglomeração nas propriedades micromeríticas e na dissolução. Aglomerados de naproxeno foram preparados por meio da utilização de sistema de três solventes composto de acetona (bom solvente), água (não-solvente) e diclorometano (líquido de ligação). A DSC não resulta mostrou nenhuma mudança na droga depois de processo de cristalização. Estudos de difração de Raios X do Pó (XRPD) mostraram picos agudos nos difratogramas de aglomerados esféricos, com redução mínima dea altura dos picos. Os solventes residuais estão amplamente abaixo dos limites tolerados nos aglomerados. Os estudos de Microscopia Eletrônica de Varredura (SEM) mostraram que esses aglomerados eram de estrutura esférica e formados por grupos de pequenos cristais. Os aglomerados apresentaram solubilidade, taxa de dissolução e propriedades micromeríticas aprimoradas em comparação com o fármaco puro. Estudos anti-inflamatórios foram conduzidos em ratos Wistar albinos masculinos e os aglomerados de naproxeno mostraram atividade mais significativa do que o fármaco puro
    corecore