725 research outputs found

    An Experimental Platform for the Analysis of Polydisperse Systems Based on Light Scattering and Image Processing

    Get PDF
    In this work an experimental platform for light scattering analysis has been developed using image sensors, as CCD or CMOS. The main aim of this activity is the investigation of the feasibility of using these types of sensors for polydisperse systems analysis. The second purpose is the implementation of an experimental platform which is enough versatile to permit the observation of different phenomena in order to develop novel sensors/approach using data fusion

    Age-Specific 18F-FDG Image Processing Pipelines and Analysis Are Essential for Individual Mapping of Seizure Foci in Paediatric Patients with Intractable Epilepsy

    Get PDF
    Fluoro-18-deoxyglucose positron emission tomography (FDG-PET) is an important tool for the pre-surgical assessment of children with drug-resistant epilepsy. Standard assessment is carried out visually and this is often subjective and highly user-dependent. Voxel-wise statistics can be used to remove user-dependent biases by automatically identifying areas of significant hypo/hyper-metabolism, associated to the epileptogenic area. In the clinical settings, this analysis is carried out using commercially available software. These software packages suffer from two main limitations when applied to paediatric PET data: 1) paediatric scans are spatially normalised to an adult standard template and 2) statistical comparisons use an adult control dataset. The aim of this work is to provide a reliable observer-independent pipeline for the analysis of paediatric FDG-PET scans, as part of pre-surgical planning in epilepsy. METHODS: A pseudo-control dataset (n = 19 for 6-9y, n = 93 for 10-20y) was used to create two age-specific FDG-PET paediatric templates in standard paediatric space. The FDG-PET scans of 46 epilepsy patients (n = 16 for 6-9y, n = 30 for 10-17y) were retrospectively collated and analysed using voxel-wise statistics. This was implemented with the standard pipeline available in the commercial software Scenium and an in-house Statistical Parametric Mapping v.8 (SPM8) pipeline (including age-specific paediatric templates and normal database). A kappa test was used to assess the level of agreement between findings of voxel-wise analyses and the clinical diagnosis of each patient. The SPM8 pipeline was further validated using post-surgical seizure-free patients. RESULTS: Improved agreement with the clinical diagnosis was reported using SPM8, in terms of focus localisation, especially for the younger patient group: kScenium=0.489 versus kSPM=0.805. The proposed pipeline also showed a sensitivity of ~70% in both age ranges, for the localisation of hypo-metabolic areas on paediatric FDG-PET scans in post-surgical seizure-free patients. CONCLUSION: We show that by creating age-specific templates and using paediatric control databases, our pipeline provides an accurate and sensitive semi-quantitative method for assessing FDG-PET scans of patients under 18y

    Development of a Novel Snom Probe for in Liquid Biological Samples

    Get PDF
    This work is focused on the study and implementation of a novel method for the development of probes for Scanning Near-field Optical Microscopy (SNOM). The proposed approach is based on the mechanical impedance matching between the optical fiber tip and the resonating tuning fork. This methodology allowed an increase of the quality factor of the piezoelectric resonator used as atomic force transducer in the SNOM probe, thus increasing its overall sensitivity. This kind of probes are often used on biological soft samples in liquid. The presence of water medium has a strong dumping effect on probe sensitivity. Experimental validation of the proposed methodology showed an increase of robustness of SNOM probes also for in liquid samples

    Design of beam optics for the Future Circular Collider e+e- -collider rings

    Full text link
    A beam optics scheme has been designed for the Future Circular Collider-e+e- (FCC-ee). The main characteristics of the design are: beam energy 45 to 175 GeV, 100 km circumference with two interaction points (IPs) per ring, horizontal crossing angle of 30 mrad at the IP and the crab-waist scheme [1] with local chromaticity correction. The crab-waist scheme is implemented within the local chromaticity correction system without additional sextupoles, by reducing the strength of one of the two sextupoles for vertical chromatic correction at each side of the IP. So-called "tapering" of the magnets is applied, which scales all fields of the magnets according to the local beam energy to compensate for the effect of synchrotron radiation (SR) loss along the ring. An asymmetric layout near the interaction region reduces the critical energy of SR photons on the incoming side of the IP to values below 100 keV, while matching the geometry to the beam line of the FCC proton collider (FCC-hh) [2] as closely as possible. Sufficient transverse/longitudinal dynamic aperture (DA) has been obtained, including major dynamical effects, to assure an adequate beam lifetime in the presence of beamstrahlung and top-up injection. In particular, a momentum acceptance larger than +/-2% has been obtained, which is better than the momentum acceptance of typical collider rings by about a factor of 2. The effects of the detector solenoids including their compensation elements are taken into account as well as synchrotron radiation in all magnets. The optics presented in this paper is a step toward a full conceptual design for the collider. A number of issues have been identified for further study

    The FCC-ee study: Progress and challenges

    Full text link
    The FCC (Future Circular Collider) study represents a vision for the next large project in high energy physics, comprising an 80-100 km tunnel that can house a future 100 TeV hadron collider. The study also includes a high luminosity e+e- collider operating in the centre-of-mass energy range of 90-350 GeV as a possible intermediate step, the FCC-ee. The FCC-ee aims at definitive electro-weak precision measurements of the Z, W, H and top particles, and search for rare phenomena. Although FCC-ee is based on known technology, the goal performance in luminosity and energy calibration make it quite challenging. During 2014 the study went through an exploration phase. The study has now entered its second year and the aim is to produce a conceptual design report during the next three to four years. We here report on progress since the last IPAC conference.Comment: Poster presented at IPAC15,Richmond, VA, USA, May 201

    Conservation actions for restoring the coastal lagoon habitats: Strategy and multidisciplinary approach of LIFE Lagoon Refresh

    Get PDF
    The Habitat Directive of European Union lists Costal Lagoons (habitat code 1150*) among priority habitats because they are in danger of disappearance. Natural ecosystems may recover from anthropogenic perturbations; however, the recovery can follow natural restoration or it can be redirected through ecological restoration by anthropogenic intervention. Accordingly, by collecting the available theoretical indications for restoration of estuarine and coastal areas, a methodological approach was detailed andit can be summarised into five issues: (i) Environmental context from which it began; (ii) Desired state to be achieved; (iii) Policies and socio-economic context; (iv) Typology of recovery and/or improvement of habitats and ecosystems; and (v) Methods for monitoring the impact of the project. The project strategy, management and measures of LIFE Lagoon Refresh were also presented and discussed, as a case study for the implementation of the multidisciplinary approach for restoration ecology in transitional waters. The project takes place in the northern Venice Lagoon (Italy), started in 2017 and it lasts 5 years. In the Venice Lagoon, since the 20th century, strong reductions of the typical salinity gradient of buffer areas between lagoon and mainland, and of reedbed extensions have occurred due to historic human interventions, with negative consequences on coastal lagoon habitats. To improve the conservation status of habitats and biodiversity of the area, the LIFE Lagoon Refresh project included several conservative actions, which are (i) the diversion of a freshwater flow from the Sile River into the lagoon; (ii) the restoration of intertidal morphology, through biodegradable structures; (iii) the reed and aquatic angiosperm transplantations with the involvement of local fishermen and hunters, and (iv) the reduction of hunting and fishing pressures in the intervention area. To achieve the restoration of the lagoon environment, the strategy of the project covered a combination of different aspects and tools, such as planning activities, through the involvement of local Institutions and communities; stakeholder’s involvement to increase awareness of environment conservation and socioeconomic value improvement; an ecological engineering approach; numerical models as supporting tool for planning and managing of conservation actions; environmental monitoring performed before and after the conservation actions

    Crab Waist Scheme Luminosity and Background Diagnostic at DAFNE

    No full text
    TUPTPF029International audienceTest of the crab waist scheme, undergoing at the Frascati DAFNE accelerator complex, needs a fast and accurate measurement of the luminosity, as well as a full characterization of the background conditions. Three different monitors, a Bhabha calorimeter, a Bhabha GEM tracker and a gamma bremsstrahlung proportional counter have been designed, tested and installed on the accelerator at the end of January 2008. Results from beam-test measurements, comparison with the Monte Carlo simulation and preliminary data collected during the SIDDHARTA run are presented

    Efficient positronium laser excitation for antihydrogen production in a magnetic field

    Full text link
    Antihydrogen production by charge exchange reaction between Positronium (Ps) atoms and antiprotons requires an efficient excitation of Ps atoms up to high-n levels (Rydberg levels). In this study it is assumed that a Ps cloud is produced within a relatively strong uniform magnetic field (1 Tesla) and with a relatively high temperature (100 K). Consequently, the structure of energy levels are deeply modified by Zeeman and motional Stark effects. A two-step laser light excitation, the first one from ground to n=3 and the second from this level to a Rydberg level, is proposed and the physics of the problem is discussed. We derive a simple formula giving the absorption probability with substantially incoherent laser pulses. A 30% population deposition in high-nn states can be reached with feasible lasers suitably tailored in power and spectral bandwidth.Comment: 18 pages, 4 figures; changed content (with erasing of section 2), adding a new figure and new reference
    • 

    corecore