126 research outputs found

    Fishes of the Sucarnoochee River System, Alabama and Mississippi

    Get PDF

    Posterior Hip Impingement at Maximal Hip Extension in Female Patients With Increased Femoral Version or Increased McKibbin Index and Its Effect on Sports Performance.

    Get PDF
    BACKGROUND The location of posterior hip impingement at maximal extension in patients with posterior femoroacetabular impingement (FAI) is unclear. PURPOSE To investigate the frequency and area of impingement at maximal hip extension and at 10° and 20° of extension in female patients with increased femoral version (FV) and posterior hip pain. STUDY DESIGN Cross-sectional study; Level of evidence, 3. METHODS Osseous patient-specific 3-dimensional (3D) models were generated of 50 hips (37 female patients, 3D computed tomography) with a positive posterior impingement test and increased FV (defined as >35°). The McKibbin index (combined version) was calculated as the sum of FV and acetabular version (AV). Subgroups of patients with an increased McKibbin index >70° (24 hips) and FV >50° (20 hips) were analyzed. A control group of female participants (10 hips) had normal FV, normal AV, and no valgus deformity (neck-shaft angle, <139°). Validated 3D collision detection software was used for simulation of osseous impingement-free hip extension (no rotation). RESULTS The mean impingement-free maximal hip extension was significantly lower in patients with FV >35° compared with the control group (15° ± 15° vs 55° ± 19°; P 35° had osseous posterior extra-articular ischiofemoral hip impingement. At 20° of extension, the frequency of posterior extra-articular ischiofemoral impingement was significantly higher for patients with a McKibbin index >70° (83%) and for patients with FV >35° (76%) than for controls (0%) (P 70° versus <70° (251 vs 44 mm2; P = .001). CONCLUSION The limited hip extension found in our study could theoretically affect the performance of sports activities such as running, ballet dancing, or lunges. Therefore, although not examined directly in this study, these activities are not advisable for these patients. Preoperative evaluation of FV and the McKibbin index is important in female patients with posterior hip pain before hip preservation surgery (eg, hip arthroscopy)

    Diagnosis of acetabular retroversion: Three signs positive and increased retroversion index have higher specificity and higher diagnostic accuracy compared to isolated positive cross over sign.

    Get PDF
    Objectives The crossover-sign (COS) is a radiographic sign for diagnosis of acetabular-retroversion(AR) in patients with femoroacetabular-impingement (FAI) but overestimates AR. Three signs combined with retroversion-index (RI) could potentially improve diagnostic-accuracy. Aims (1)To calculate central acetabular-version (AV, CT/MRI) in patients with isolated positive COS and in patients with three radiographic signs for AR on radiographs (AP).(2)To calculate diagnostic performance of positive COS and of three signs combined with retroversion-index (RI) > 30% on radiographs (AP) to detect global AR (AV < 10°, CT/MRI). Methods A retrospective, IRB-approved, controlled diagnostic study comparing radiographic signs for AR (AP radiographs) with MRI/CT-based measurement of central AV was performed. 462 symptomatic patients (538 hips) with FAI or hip-dysplasia were compared to control-group (48 hips). Three signs for AR(on radiographs) were analyzed: COS, posterior-wall-sign and ischial-spine-sign. RI (synonym cross-over-index) quantifies overlap of anterior and posterior wall in case of positive COS. Diagnostic performance for COS and for three signs combined with RI > 30% to detect central AV < 10° (global AR) was calculated. Results (1)Central AV was significantly (p  30% on radiographs compared to patients with positive COS (18 ± 7°).(2)Sensitivity and specificity of three signs combined with RI > 30% on radiographs was 85% and 63% (87% and 23% for COS). Negative-predictive-value (NPV) was 94% (93% for COS) to rule out global AR (AV < 10°, CT/MRI). Diagnostic accuracy increased significantly (p < 0.001) from 31% (COS) to 68% using three signs. Conclusion Improved specificity and diagnostic accuracy for diagnosis of global AR can help to avoid misdiagnosis. Global AR can be ruled out with a probability of 94% (NPV) in the absence of three radiographic signs combined with retroversion-index < 30% (e.g. isolated COS positive)

    Hip Impingement of severe SCFE patients after in situ pinning causes decreased flexion and forced external rotation in flexion on 3D-CT

    Get PDF
    Introduction: In situ pinning is an accepted treatment for stable slipped capital femoral epiphysis. However, residual deformity of severe slipped capital femoral epiphysis can cause femoroacetabular impingement and forced external rotation. Purpose/questions: The aim of this study was to evaluate the (1) hip external rotation and internal rotation in flexion, (2) hip impingement location, and (3) impingement frequency in early flexion in severe slipped capital femoral epiphysis patients after in situ pinning using three-dimensional computed tomography. Patients and methods: A retrospective Institutional Review Board-approved study evaluating 22 patients (26 hips) with severe slipped capital femoral epiphysis (slip angle > 60°) using postoperative three-dimensional computed tomography after in situ pinning was performed. Mean age at slipped capital femoral epiphysis diagnosis was 13 ± 2 years (58% male, four patients bilateral, 23% unstable, 85% chronic). Patients were compared to contralateral asymptomatic hips (15 hips) with unilateral slipped capital femoral epiphysis (control group). Pelvic three-dimensional computed tomography after in situ pinning was used to generate three-dimensional models. Specific software was used to determine range of motion and impingement location (equidistant method). And 22 hips (85%) underwent subsequent surgery. Results: (1) Severe slipped capital femoral epiphysis patients had significantly (p < 0.001) decreased hip flexion (43 ± 40°) and internal rotation in 90° of flexion (−16 ± 21°, IRF-90°) compared to control group (122 ± 9° and 36 ± 11°). (2) Femoral impingement in maximal flexion was located anterior to anterior–superior (27% on 3 o’clock and 27% on 1 o’clock) of severe slipped capital femoral epiphysis patients and located anterior to anterior–inferior (38% on 3 o’clock and 35% on 4 o’clock) in IRF-90°. (3) However, 21 hips (81%) had flexion < 90° and 22 hips (85%) had < 10° of IRF-90° due to hip impingement and 21 hips (81%) had forced external rotation in 90° of flexion (< 0° of IRF-90°). Conclusion: After in situ pinning, patient-specific three-dimensional models showed restricted flexion and IRF-90° and forced external rotation in 90° of flexion due to early hip impingement and residual deformity in most of the severe slipped capital femoral epiphysis patients. This could help to plan subsequent hip preservation surgery, such as hip arthroscopy or femoral (derotation) osteotomy

    Stationary perturbations and infinitesimal rotations of static Einstein-Yang-Mills configurations with bosonic matter

    Get PDF
    Using the Kaluza-Klein structure of stationary spacetimes, a framework for analyzing stationary perturbations of static Einstein-Yang-Mills configurations with bosonic matter fields is presented. It is shown that the perturbations giving rise to non-vanishing ADM angular momentum are governed by a self-adjoint system of equations for a set of gauge invariant scalar amplitudes. The method is illustrated for SU(2) gauge fields, coupled to a Higgs doublet or a Higgs triplet. It is argued that slowly rotating black holes arise generically in self-gravitating non-Abelian gauge theories with bosonic matter, whereas, in general, soliton solutions do not have rotating counterparts.Comment: 8 pages, revtex, no figure

    Combined abnormalities of femoral version and acetabular version and McKibbin Index in FAI patients evaluated for hip preservation surgery.

    Get PDF
    Frequencies of combined abnormalities of femoral version (FV) and acetabular version (AV) and of abnormalities of the McKibbin index are unknown. To investigate the prevalence of combined abnormalities of FV and AV and of abnormalities of the McKibbin index in symptomatic patients with femoroacetabular impingement (FAI), a retrospective, Institutional Review Board (IRB)-approved study of 333 symptomatic patients (384 hips) that were presented with hip pain and FAI was performed. The computed tomography/magnetic resonance imaging based measurement of central AV, cranial AV and FV was compared among five subgroups with distinguished FAI subgroups and patients that underwent a hip preservation surgery. The allocation to each subgroup was based on AP radiographs. Normal AV and FV were 10-25°. The McKibbin index is the sum of central AV and FV. Of patients that underwent a hip preservation surgery, 73% had a normal McKibbin index (20-50°) but 27% had an abnormal McKibbin index. Of all patients, 72% had a normal McKibbin index, but 28% had abnormal McKibbin index. The prevalence of combined abnormalities of FV and AV varied among subgroups: a higher prevalence of decreased central AV combined with decreased FV of patients with acetabular-retroversion group (12%) and overcoverage (11%) was found compared with mixed-type FAI (5%). Normal AV combined with normal FV was present in 41% of patients with cam-type FAI and in 34% of patients with overcoverage. Patients that underwent a hip preservation surgery had normal mean FV (17 ± 11°), central AV (19 ± 7°), cranial AV (16 ± 10°) and McKibbin index (36 ± 14°). Frequency of combined abnormalities of AV and FV differs between subgroups of FAI patients. Aggravated and compensated McKibbin index was prevalent in FAI patients. This has implications for open hip preservation surgery (surgical hip dislocation or femoral derotation osteotomy) or hip arthroscopy or non-operative treatment

    Three-Dimensional Magnetic Resonance Imaging Bone Models of the Hip Joint Using Deep Learning: Dynamic Simulation of Hip Impingement for Diagnosis of Intra- and Extra-articular Hip Impingement

    Get PDF
    Background: Dynamic 3-dimensional (3D) simulation of hip impingement enables better understanding of complex hip deformities in young adult patients with femoroacetabular impingement (FAI). Deep learning algorithms may improve magnetic resonance imaging (MRI) segmentation. Purpose: (1) To evaluate the accuracy of 3D models created using convolutional neural networks (CNNs) for fully automatic MRI bone segmentation of the hip joint, (2) to correlate hip range of motion (ROM) between manual and automatic segmentation, and (3) to compare location of hip impingement in 3D models created using automatic bone segmentation in patients with FAI. Study Design: Cohort study (diagnosis); Level of evidence, 3. Methods: The authors retrospectively reviewed 31 hip MRI scans from 26 symptomatic patients (mean age, 27 years) with hip pain due to FAI. All patients had matched computed tomography (CT) and MRI scans of the pelvis and the knee. CT- and MRI-based osseous 3D models of the hip joint of the same patients were compared (MRI: T1 volumetric interpolated breath-hold examination high-resolution sequence; 0.8 mm3 isovoxel). CNNs were used to develop fully automatic bone segmentation of the hip joint, and the 3D models created using this method were compared with manual segmentation of CT- and MRI-based 3D models. Impingement-free ROM and location of hip impingement were calculated using previously validated collision detection software. Results: The difference between the CT- and MRI-based 3D models was <1 mm, and the difference between fully automatic and manual segmentation of MRI-based 3D models was <1 mm. The correlation of automatic and manual MRI-based 3D models was excellent and significant for impingement-free ROM (r = 0.995; P < .001), flexion (r = 0.953; P < .001), and internal rotation at 90° of flexion (r = 0.982; P < .001). The correlation for impingement-free flexion between automatic MRI-based 3D models and CT-based 3D models was 0.953 (P < .001). The location of impingement was not significantly different between manual and automatic segmentation of MRI-based 3D models, and the location of extra-articular hip impingement was not different between CT- and MRI-based 3D models. Conclusion: CNN can potentially be used in clinical practice to provide rapid and accurate 3D MRI hip joint models for young patients. The created models can be used for simulation of impingement during diagnosis of intra- and extra-articular hip impingement to enable radiation-free and patient-specific surgical planning for hip arthroscopy and open hip preservation surgery

    Less in-toeing after femoral derotation osteotomy in adult patients with increased femoral version and posterior hip impingement compared to patients with femoral retroversion

    Get PDF
    In-toeing of the foot was associated with high femoral version (FV), while Out-toeing was associated with femoral-retroversion. Therefore, we report on (i) foot-progression-angle (FPA), (ii) prevalence of In-toeing and Out-toeing, and (iii) clinical outcome of patients treated with femoral-derotation-osteotomy (FDO). We performed a retrospective analysis involving 20 patients (20 hips) treated with unilateral FDO (2017-18). Of them, 14 patients had increased FV, 6 patients had femoral-retroversion. Follow-up time was mean 1 ± 1 years. All patients had minimal 1-year follow-up and the mean age was 29 ± 8 years. Patients with increased FV (FV > 35°) presented with positive posterior-impingement-test and mean FV was 49 ± 11° (Murphy method). Six patients with femoral-retroversion (FV < 10°) had positive anterior impingement test and mean FV of 5 ± 4°. Instrumented gait analysis was performed preoperatively and at follow-up using the Gaitrite system to measure FPA and was compared to a control group of 18 healthy asymptomatic volunteers (36 feet, mean age 29 ± 6 years). (i) Mean FPA increased significantly (P = 0.006) from preoperative 1.3 ± 7° to 4.5 ± 6° at follow-up for patients with increased FV and was not significantly different compared to the control group (4.0 ± 4.5°). (ii) In-toeing decreased from preoperatively (five patients) to follow-up (two patients) for patients with increased FV. Out-toeing decreased from preoperatively (two patients) to follow-up (no patient) for patients with femoral-retroversion. (iii) Subjective-hip-value of all patients increased significantly (P < 0.001) from preoperative 21 to 78 points at follow-up. WOMAC was 12 ± 8 points at follow-up. Patients with increased FV that underwent FDO walked with less In-toeing. FDO has the potential to reduce In-toeing and Out-toeing and to improve subjective satisfaction at follow-up

    Posterior Extra-articular Ischiofemoral Impingement Can Be Caused by the Lesser and Greater Trochanter in Patients With Increased Femoral Version: Dynamic 3D CT–Based Hip Impingement Simulation of a Modified FABER Test

    Get PDF
    Background: Posterior extra-articular hip impingement has been described for valgus hips with increased femoral version (FV). These patients can present clinically with lack of external rotation (ER) and extension and with a positive posterior impingement test. But we do not know the effect of the combination of deformities, and the impingement location in early flexion is unknown. Purpose: To evaluate patient-specific 3-dimensional computed tomography (3D CT) scans of hips with increased FV and control hips for differences in range of motion, location and prevalence of osseous posterior intra- and extra-articular hip impingement. Study Design: Case series; Level of evidence, 4. Methods: Osseous 3D models based on segmentation of 3D CT scans were analyzed for 52 hips (38 symptomatic patients) with positive posterior impingement test and increased FV (>35°). There were 26 hips with an increased McKibbin instability index >70 (unstable hips). Patients were mainly female (96%), with an age range of 18 to 45 years. Of them, 21 hips had isolated increased FV (>35°); 22 hips had increased FV and increased acetabular version (AV; >25°); and 9 valgus hips (caput-collum-diaphyseal angle >139°) had increased FV and increased AV. The control group consisted of 20 hips with normal FV, normal AV, and no valgus (caput-collum-diaphyseal angle <139°). Validated 3D CT–based collision detection software for impingement simulation was used to calculate impingement-free range of motion and location of hip impingement. Surgical treatment was performed after the 3D CT–based impingement simulation in 27 hips (52%). Results: Hips with increased FV had significantly (P < .001) decreased extension and ER at 90° of flexion as compared with the control group. Posterior impingement was extra-articular (92%) in hips with increased FV. Valgus hips with increased FV and AV had combined intra- and extra-articular impingement. Posterior hip impingement occurred between the ischium and the lesser trochanter at 20° of extension and 20° of ER. Impingement was located between the ischium and the greater trochanter or intertrochanteric area at 20° of flexion and 40° of ER, with a modification of the flexion-abduction-ER (FABER) test. Conclusion: Posterior extra-articular ischiofemoral hip impingement can be caused by the lesser and greater trochanter or the intertrochanteric region. We recommend performing the modified FABER test during clinical examination in addition to the posterior impingement test for female patients with high FV. In addition, 3D CT can help for surgical planning, such as femoral derotation osteotomy and/or hip arthroscopy or resection of the lesser trochanter

    Minimal Out-Toeing and Good Hip Scores of Severe SCFE Patients Treated With Modified Dunn Procedure and Contralateral Prophylactic Pinning at Minimal 5-year Follow up

    Get PDF
    Background: Slipped capital femoral epiphyses (SCFE) is associated with out-toeing of the foot and external rotation gait. But it is unknown if SCFE patients treated with the modified Dunn procedure have out-toeing at follow up.Therefore, we used instrumented gait analysis and questioned (1) do severe SCFE patients treated with a modified Dunn procedure have symmetrical foot progression angle (FPA) compared with contralateral side and compared with asymptomatic volunteers (2) what is the prevalence of out-toeing gait and what are the outcome socres at follow up. Methods: Gait analysis of 22 patients (22 hips) treated with an unilateral modified Dunn procedure for severe SCFE (slip angle >60 degrees, 2002 to 2011) was retrospectively evaluated. Of 38 patients with minimal 5-year follow up, 2 hips (4%) had avascular necrosis of the femoral head and were excluded for gait analysis. Twenty-two patients were available for gait analysis at follow up (mean follow up of 9±2 y). Mean age at follow up was 22±3 years. Mean preoperative slip angle was 64±8 degrees (33% unstable slips) and decreased postoperatively (slip angle of 8±4 degrees). Gait analysis was performed with computer-based instrumented walkway system (GAITRite) to measure FPA with embedded pressure sensors. Patients were compared with control group of 18 healthy asymptomatic volunteers (36 feet, mean age 29±6 y). Results: (1) Mean FPA of SCFE patients (3.6±6.4 degrees) at follow up was not significantly different compared with their contralateral side (5.6±5.5 degrees) and compared with FPA of controls (4.0±4.5 degrees). (2) Of the 22 SCFE patients, most of them (19 hips, 86%) had normal FPA (-5 to 15 degrees), 2 patients had in-toeing (FPA15 degrees) and was not significantly different compared with control group. (3) Mean modified Harris hip score (mHHS) was 93±11 points, mean Hip Disability and Osteoarthritis Outcome Score (HOOS) score was 91±10 points. Three patients (14%) had mHHS 95 points. Conclusions: Patients with severe SCFE treated with modified Dunn procedure had mostly symmetrical FPA and good hip scores at long term follow up. This is in contrast to previous studies. Although 1 patient had out-toeing and 2 patients had in-toeing at follow up, they had good hip scores. Level of evidence: Level III-retrospective comparative study
    • …
    corecore