227 research outputs found

    Approaching the High Intrinsic Electrical Resistivity of NbO2 in Epitaxially Grown Films

    Get PDF
    NbO2 is a promising candidate for resistive switching devices due to an insulator-metal transition above room temperature, which is related to a phase transition from a distorted rutile structure to an undistorted one. However, the electrical resistivity of the NbO2 thin films produced so far has been too low to achieve high on-off switching ratios. Here, we report on the structural, electrical, and optical characterization of single-crystalline NbO2 (001) thin films grown by pulsed laser deposition on MgF2 (001) substrates. An annealing step reduced the full width at half maximum of the NbO2 (004) x-ray Bragg reflection by one order of magnitude, while the electrical resistivity of the films increased by two orders of magnitude to about 1k Omega cm at room temperature. Temperature-dependent resistivity measurements of an annealed sample revealed that below 650K, two deep-level defects with activation energies of 0.25eV and 0.37eV dominate the conduction, while above 650K, intrinsic conduction prevails. Optical characterization by spectroscopic ellipsometry and by absorption measurements with the electric field vector of the incident light perpendicular to the c-axis of the distorted rutile structure indicates the onset of fundamental absorption at about 0.76eV at room temperature, while at 4K, the onset shifts to 0.85eV. These optical transitions are interpreted to take place across the theoretically predicted indirect bandgap of distorted rutile NbO2

    Carbon and nitrogen cycling in the Scheldt estuary: the major players, long-term changes and an integrated view

    Get PDF
    The Scheldt estuary is a highly heterotrophic, nutrient-rich, turbid, tidal estuary in a densely populated area (Belgium/The Netherlands). Here we present the results (1) on the long-term changes in nutrient loadings and transformations within the estuary and (2) on nitrogen cycling rate measurements obtained with isotopic tracers. Moreover, we have developed and applied novel techniques that allow direct linking of process rates to the identity and biomass of the organisms involved. Monitoring data and process studies have been used in numerical models to integrate the various biogeochemical cycles and to advance our understanding of the evolving estuarine filter function of the Scheldt estuary

    Interface formation of two- and three-dimensionally bonded materials in the case of GeTe-Sb2Te3 superlattices

    Get PDF
    GeTe–Sb2Te3 superlattices are nanostructured phase-change materials which are under intense investigation for non-volatile memory applications. They show superior properties compared to their bulk counterparts and significant efforts exist to explain the atomistic nature of their functionality. The present work sheds new light on the interface formation between GeTe and Sb2Te3, contradicting previously proposed models in the literature. For this purpose [GeTe(1 nm)–Sb2Te3(3 nm)]15 superlattices were grown on passivated Si(111) at 230 °C using molecular beam epitaxy and they have been characterized particularly with cross-sectional HAADF scanning transmission electron microscopy. Contrary to the previously proposed models, it is found that the ground state of the film actually consists of van der Waals bonded layers (i.e. a van der Waals heterostructure) of Sb2Te3 and rhombohedral GeSbTe. Moreover, it is shown by annealing the film at 400 °C, which reconfigures the superlattice into bulk rhombohedral GeSbTe, that this van der Waals layer is thermodynamically favored. These results are explained in terms of the bonding dimensionality of GeTe and Sb2Te3 and the strong tendency of these materials to intermix. The findings debate the previously proposed switching mechanisms of superlattice phase-change materials and give new insights in their possible memory application
    • …
    corecore