39 research outputs found

    Molecular Mechanisms of the Methionine Sulfoxide Reductase System from Neisseria meningitidis

    No full text
    Neisseria meningitidis, an obligate pathogenic bacterium in humans, has acquired different defense mechanisms to detect and fight the oxidative stress generated by the host’s defense during infection. A notable example of such a mechanism is the PilB reducing system, which repairs oxidatively-damaged methionine residues. This review will focus on the catalytic mechanism of the two methionine sulfoxide reductase (MSR) domains of PilB, which represent model enzymes for catalysis of the reduction of a sulfoxide function by thiols through sulfenic acid chemistry. The mechanism of recycling of these MSR domains by various “Trx-like” disulfide oxidoreductases will also be discussed

    Mécanisme, catalyse et spécificité structurale des Méthionine Sulfoxyde Réductases de classe A et caractérisation de disulfure oxydoréductases de Neisseria meningitidis

    No full text
    La protéine périplasmique PilB est décrite jouer un rôle in vivo dans la résistance des bactéries pathogènes du genre Neisseria au peroxyde d hydrogène généré par les macrophages de l hôte. PilB est composée de trois domaines : un domaine N-terminal (N-ter) à activité disulfure oxydoréductase, un domaine central à activité méthionine sulfoxyde réductase (Msr) de classe A, et un domaine C-terminal à activité Msr de classe B. Les MsrA et MsrB catalysent la réduction des méthionine sulfoxydes (MetSO) incluses dans des protéines, en méthionines (Met). Les deux classes A et B de Msr sont structuralement distinctes et réduisent respectivement l isomère S et R de la fonction sulfoxyde du substrat. Elles présentent un mécanisme catalytique similaire à trois étapes impliquant la formation d un intermédiaire acide sulfénique, suivie de celle d un pont disulfure intramoléculaire, qui est ensuite réduit par la thiorédoxine (Trx) dans le cas des Msr cytoplasmiques et par le domaine N-ter dans le cas des domaines Msr de PilB. Le domaine N-ter présente un repliement de type DsbE. Les DsbE sont des disulfure oxydoréductases périplasmiques impliquées dans la maturation des cytochromes c. Les études réalisées au cours de ma thèse ont permis de caractériser les résidus du site actif de la MsrA de N. meningitidis impliqués dans la reconnaissance du substrat sulfoxyde et la catalyse de l étape réductase. L étude des disulfure oxydoréductases périplasmiques de N. meningitidis a également été entreprise afin de caractériser in vitro la DsbE de N. meningitidis et de pouvoir identifier les facteurs structuraux et moléculaires impliqués dans la reconnaissance de leurs cibles et/ou partenaires.The periplasmic protein PilB is described to be involved in vivo in the resistance of pathogens from Neisseria genus to hydrogen peroxide generated by the host macrophages. PilB is composed of three domains : the N-ter domain (N-ter) that display a disulfure oxidoreductase activity, the central and the C-terminal that display methionine sulfoxide reductase A and B activities. MsrA and MsrB catalyse the reduction of protein bound methionine sulfoxide (MetSO) back to methionine (Met). These two classes of Msr A and B are structurally unrelated and are specific for the reduction of the S and R isomer of the sulfoxide function respectively. They share a similar catalytic mechanism consisting of three steps that involve the formation of a sulfenic acid intermediate followed by the formation of an intramolecular disulfide bond that is then reduced by thioredoxin for cytoplasmic Msrs and by the N-ter domain for the Msrs domain of the PilB protein. The N-ter domain display a DsbE fold. These proteins are periplasmic disulfure oxidoreductases involved in the cytochrome c maturation pathway. The results obtained during my PhD have lead to the characterisation of residues of the actove site of Neisseria meningitidis involved in the recognition of the sulfoxide substrate and in the catalysis of the reductase step. The study of periplasmic disulfure oxidoreductases from N. meningitidis was undertaken in order to characterise in vitro the DsbE from N. meningitidis. The structural and molecular factors involved in the recognition of their targets and/or partners could then be determined.NANCY1-Bib. numérique (543959902) / SudocSudocFranceF

    Chemistry enters nucleic acids biology: enzymatic mechanisms of RNA modification.

    No full text
    International audienceModified nucleotides are universally conserved in all living kingdoms and are present in almost all types of cellular RNAs, including tRNA, rRNA, sn(sno)RNA, and mRNA and in recently discovered regulatory RNAs. Altogether, over 110 chemically distinct RNA modifications have been characterized and localized in RNA by various analytical methods. However, this impressive list of known modified nucleotides is certainly incomplete, mainly due to difficulties in identification and characterization of these particular residues in low abundance cellular RNAs. In DNA, modified residues are formed by both enzymatic reactions (like DNA methylations, for example) and by spontaneous chemical reactions resulting from oxidative damage. In contrast, all modified residues characterized in cellular RNA molecules are formed by specific action of dedicated RNA-modification enzymes, which recognize their RNA substrate with high specificity. These RNA-modification enzymes display a great diversity in terms of the chemical reaction and use various low molecular weight cofactors (or co-substrates) in enzymatic catalysis. Depending on the nature of the target base and of the co-substrate, precise chemical mechanisms are used for appropriate activation of the base and the co-substrate in the enzyme active site. In this review, we give an extended summary of the enzymatic mechanisms involved in formation of different methylated nucleotides in RNA, as well as pseudouridine residues, which are almost universally conserved in all living organisms. Other interesting mechanisms include thiolation of uridine residues by ThiI and the reaction of guanine exchange catalyzed by TGT. The latter implies the reversible cleavage of the N-glycosidic bond in order to replace the initially encoded guanine by an aza-guanosine base. Despite the extensive studies of RNA modification and RNA-modification machinery during the last 20 years, our knowledge on the exact chemical steps involved in catalysis of RNA modification remains very limited. Recent discoveries of radical mechanisms involved in base methylation clearly demonstrate that numerous possibilities are used in Nature for these difficult reactions. Future studies are certainly required for better understanding of the enzymatic mechanisms of RNA modification, and this knowledge is crucial not only for basic research, but also for development of new therapeutic molecules

    La free R Méthionine sulfoxyde réductase (fRMsr) de Neisseria meningitidis (Mécanisme, catalyse et spécificité structurale)

    No full text
    Les Méthionine sulfoxyde réductases (Msr) catalysent la réduction spécifique des méthionine sulfoxydes (Met-O) en méthionines (Met). Elles sont impliquées dans la résistance des cellules à un stress oxydant et dans la virulence des bactéries pathogènes du genre Neisseria. Cette famille d'enzyme se compose de trois classes, les MsrA et B, structuralement distinctes, et présentant une stéréosléctivité respectivement pour l'isomère S et R de la fonction sulfoxyde du substrat. Une troisième classe, découverte récemment, et appelée fRMsr, catalyse la réduction spécifique de la forme libre de l'isomère R de la fonction sulfoxyde. La fRMsr appartient à la famille des domaines GAF, généralement impliqués dans la signalisation cellulaire, et les fRMsr représentent le premier domaine GAF présentant une activité enzymatique. Les études réalisées au cours de ma thèse sur la fRMsr de Neisseria meningitidis ont permis de montrer que : 1) fRMsr de N. meningitidis présente un mécanisme catalytique identique à MsrA/B avec la formation d'au moins un pont disulfure intramoléculaire Cys84-Cys118 réduit par la thiorédoxine (Trx) ; 2) La Cys118 est le résidu catalytique sur lequel l'intermédiaire acide sulfénique doit se former ; 3) L'étape réductase est l'étape cinétiquement déterminante du mécanisme à deux étapes conduisant à la formation du pont disulfure Cys84-Cys118. La combinaison de l'analyse des résultats cinétiques, et de la structure tridimensionnelle de la fRMsr de N. meningitidis en complexe avec le substrat ont permis de montrer : 1) L'existence d'un site de reconnaissance oxyanion impliqué dans la stabilisation de la fonction carboxylate ; 2) Un rôle de la fonction carboxylate du résidu Asp143 dans la catalyse de l'étape réductase ; 3) Le résidu Glu125 est impliqué dans la reconnaissance et/ou le positionnement du substrat Met-O probablement via la stabilisation du groupement NH3+ ; 4) Un rôle du résidu Asp141 dans le positionnement des résidus Asp143 et Glu125 ; 5) le noyau indole du Trp62 est impliqué dans la stabilisation du groupe méthyle-[epsilon]Methionine sulfoxide reductases (Msr) catalyze the specific reduction of methionine sulfoxides (Met-O) into methionine (Met). They are involved in cell defences against oxidative stress and virulence of pathogenic bacteria of Neisseria genius. This family of enzymes consists of three classes, MsrA and MsrB, structurally-unrelated, Specific for the S and the R epimer of the sulfoxide function of the substrate, respectively. A third class, recently discovered and called fRMsr, selectively reduce the free form of the R epimer of the sulfoxide function. The fRMsr belongs to the family of GAF domains, they are usually involved in cell signaling, and fRMsr represent the first GAF domain to show enzymatic activity. The studies of the Neisseria meningitidis fRMsr have shown that: 1) The Neisseria meningitidis fRMsr have a identical catalytic mechanism to MsrA and MsrB with the formation of at least one intramolecular disulfide bond, Cys84-Cys118 reduced by thioredoxin (Trx) ; 2) The Cys118 is demonstrated to be the catalytic Cys on which a sulfenic acid is formed ; 3) The Reductase step is the rate determining step of the mechanism leading to the formation of the disulfide bond Cys84-Cys118. The combination of the biochemical and kinetics data, and the examination of the 3D structure of the N. meningitidis fRMsr in complex with its substrate shown: 1) an oxyanion hole involved in the accommodation of the carboxylate group ; 2) the carboxylate group of the Asp143 residue involved in the catalysis of step reductase, and 3) The Glu125 residue involved in the recognition and/or positioning of the Met-O probably by the stabilization of the NH3+; 4) the Asp141 residue involved in the positioning of Asp143 and Glu125 residues ; 5) the indole ring of the Trp62 residue involved in stabilizing of the epsilon-methyl groupMETZ-SCD (574632105) / SudocNANCY1-Bib. numérique (543959902) / SudocNANCY2-Bibliotheque electronique (543959901) / SudocNANCY-INPL-Bib. électronique (545479901) / SudocSudocFranceF

    Les protéines PilB, nDsbD et DsbE1 de Neisseria meningitidis (caractérisation enzymatique, fonctionnelle et structurale)

    No full text
    Les espèces Neisseria gonorrhoeae et Neisseria meningitidis, sont des bactéries pathogènes obligatoires de l'Homme, qui ont acquis différents mécanismes de défense pour détecter et combattre le stress oxydant généré par les mécanismes de défense de l'hôte lors de l'infection. La protéine PilB périplasmique, ferait partie de ces mécanismes et serait de ce fait associée à leur pathogénicité. PilB est composée de trois domaines : un domaine N-terminal (Nter) à activité disulfure oxydoréductase, et les domaines central et C-terminal à activité Méthionine Sulfoxyde Réductase (Msr) respectivement de classe A et B. L'étude des domaines isolés de PilB avait montré que le domaine Nter réduit sélectivement le domaine MsrB. Par ailleurs, le domaine Nter présente un repliement de type DsbE. Les DsbE sont des disulfure oxydoréductases périplasmiques impliquées dans la maturation des cytochromes c. En particulier, la DsbE1 de N. meningitidis a été identifiée par le Dr Adeline Gand lors de son doctorat.Lors de ma thèse, l'étude des protéines PilB de N. meningitidis et de Fusobacterium nucleatum m'a permis de montrer que : 1) la sélectivité de réduction du domaine Nter pour le domaine MsrB n'est pas conservée, 2) la sélectivité de réduction des domaines Nter observée sur les domaines isolés n'est pas retrouvée sur les PilB entiers ; et 3) dans tous les PilB, la réduction du domaine MsrB par le domaine Nter peut se faire selon un mécanisme intramoléculaire. De plus, nous avons étudié in vivo l'effet de la délétion du gène pilB sur la survie d'une souche de N. meningitidis en présence d'agents oxydants. D'autre part, le domaine N-terminal de la protéine DsbD (nDsbD) de N. meningitidis a été identifié comme étant le réducteur périplasmique de PilB et de la DsbE1 de N. meningitidis. Enfin, la caractérisation de l'activité apocytochrome c réductase de la DsbE1 de N. meningitidis a été complétée par des approches in vitro et in vivo chez N. meningitidisThe Neisseria gonorrhoeae and Neisseria meningitidis species are human obligatory pathogenic bacteria, which acquired various defense mechanisms to detect and fight oxidative stress generated by mechanisms of host defense during infection. The periplasmic PilB protein, specific to these bacteria, would be part of such mechanisms and would be associated with their pathogenicity. PilB is composed of three domains: an N-terminal domain (Nter) with disulfide oxidoreductase activity, and central and C-terminal domains with Methionine sulfoxide reductase activity (Msr) of A and B class respectively. The study of isolated domains of PilB showed that the Nter domain selectively reduced MsrB domain. Moreover, this Nter domain presents a DsbE-fold. The DsbE are periplasmic disulfide oxidoreductases involved in the maturation of cytochrome c. In particular, Dr. Adeline Gand identified the DsbE1 from N. meningitidis during his PhD. During my PhD, the study of PilB proteins from N. meningitidis and Fusobacterium nucleatum allowed me to show that: 1) the selective reduction of Nter domain for the MsrB domain is not conserved, 2) the selective reduction of Nter domains observed on the isolated domains is not found in entire PilB, and 3) in all PilB, the MsrB domain reduction by Nter domain could be an intramolecular mechanism. Moreover, we studied the in vivo effect of the pilB gene deletion on the survival of a strain of N. meningitidis in the presence of oxidants. And, the N-terminal domain of DsbD protein (nDsbD) from N. meningitidis was identified as the reducing partner of periplasmic PilB and DsbE1 of N. meningitidis. Finally, the characterization of apocytochrome c reductase activity of DsbE1 N. meningitidis was complemented by in vitro and in vivo approaches in N. meningitidisNANCY1-Bib. numérique (543959902) / SudocSudocFranceF

    Characterization of the amino acids from Neisseria meningitidis methionine sulfoxide reductase B involved in the chemical catalysis and substrate specificity of the reductase step.

    No full text
    Methionine sulfoxide reductases (Msrs) are antioxidant repair enzymes that catalyze the thioredoxin-dependent reduction of methionine sulfoxide back to methionine. The Msr family is composed of two structurally unrelated classes of enzymes named MsrA and MsrB, which display opposite stereoselectivities toward the S and R isomers of the sulfoxide function, respectively. Both classes of Msr share a similar three-step chemical mechanism involving first a reductase step that leads to the formation of a sulfenic acid intermediate. In this study, the invariant amino acids of Neisseria meningitidis MsrB involved in the reductase step catalysis and in substrate binding have been characterized by the structure-function relationship approach. Altogether the results show the following: 1) formation of the MsrB-substrate complex leads to an activation of the catalytic Cys-117 characterized by a decreased pKapp of approximately 2.7 pH units; 2) the catalytic active MsrB form is the Cys-117-/His-103+ species with a pKapp of 6.6 and 8.3, respectively; 3) His-103 and to a lesser extent His-100, Asn-119, and Thr-26 (via a water molecule) participate in the stabilization of the polarized form of the sulfoxide function and of the transition state; and 4) Trp-65 is essential for the catalytic efficiency of the reductase step by optimizing the position of the substrate in the active site. A scenario for the reductase step is proposed and discussed in comparison with that of MsrA
    corecore