31 research outputs found

    Formation of large-scale magnetic structures associated with the Fermi bubbles

    Full text link
    The Fermi bubbles are part of a complex region of the Milky Way. This region presents broadband extended non-thermal radiation, apparently coming from a physical structure rooted in the Galactic Centre and with a partly-ordered magnetic field threading it. We explore the possibility of an explosive origin for the Fermi bubble region to explain its morphology, in particular that of the large-scale magnetic fields, and provide context for the broadband non-thermal radiation. We perform 3D magnetohydrodynamical simulations of an explosion from a few million years ago that pushed and sheared a surrounding magnetic loop, anchored in the molecular torus around the Galactic Centre. Our results can explain the formation of the large-scale magnetic structure in the Fermi bubble region. Consecutive explosive events may match better the morphology of the region. Faster velocities at the top of the shocks than at their sides may explain the hardening with distance from the Galactic Plane found in the GeV emission. In the framework of our scenario, we estimate the lifetime of the Fermi bubbles as 2×1062\times10^6 yr, with a total energy injected in the explosion(s) >1055> 10^{55} ergs. The broadband non-thermal radiation from the region may be explained by leptonic emission, more extended in radio and X-rays, and confined to the Fermi bubbles in gamma rays.Comment: 5 pages, 4 figures, accepted for A&

    The role of supernovae inside AGN jets in UHECR acceleration

    Full text link
    Jets of active galactic nuclei are potential accelerators of ultra high-energy cosmic rays. Supernovae can occur inside these jets and contribute to cosmic ray acceleration, particularly of heavy nuclei, but that contribution has been hardly investigated so far. We carried out a first dedicated exploration of the role of supernovae inside extragalactic jets in the production of ultra high-energy cosmic rays. We characterized the energy budget of supernova-jet interactions, and the maximum possible energies of the particles accelerated in those events, likely dominated by heavy nuclei. This allowed us to assess whether these interactions can be potential acceleration sites of ultra high-energy cosmic rays, or at least of their seeds. For that, we estimated the cosmic ray luminosity for different galaxy types, and compared the injection rate of cosmic ray seeds into the jet with that due to galactic cosmic ray entrainment. Since the supernova is fueled for a long time by the luminosity of the jet, the energy of a supernova-jet interaction can be several orders of magnitude greater than that of an isolated supernova. Thus, despite the low rate of supernovae expected to occur in the jet, they could still provide more seeds for accelerating ultra high-energy particles than cosmic ray entrainment from the host galaxy. Moreover, these interactions can create sufficiently efficient accelerators to be a source of cosmic rays with energies ≳10\gtrsim 10~EeV. Supernova-jet interactions can contribute significantly to the production of ultra high-energy cosmic rays, either directly by accelerating these particles themselves or indirectly by providing pre-accelerated seeds.Comment: 4 pages, Letter accepted for publication in Astronomy and Astrophysics (in press

    On the formation of TeV radiation in LS 5039

    Full text link
    The recent detections of TeV gamma-rays from compact binary systems show that relativistic outflows (jets or winds) are sites of effective acceleration of particles up to multi-TeV energies. In this paper, we discuss the conditions of acceleration and radiation of ultra-relativistic electrons in LS 5039, the gamma-ray emitting binary system for which the highest quality TeV data are available. Assuming that the gamma-ray emitter is a jet-like structure, we performed detailed numerical calculations of the energy spectrum and lightcurves accounting for the acceleration efficiency, the location of the accelerator, the speed of the emitting flow, the inclination angle of the system, as well as specific features related to anisotropic inverse Compton scattering and pair production. We conclude that the accelerator should not be deep inside the binary system unless we assume a very efficient acceleration rate. We show that within the IC scenario both the gamma-ray spectrum and flux are strongly orbital phase dependent. Formally, our model can reproduce, for specific sets of parameter values, the energy spectrum of gamma-rays reported by HESS for wide orbital phase intervals. However, the physical properties of the source can be constrained only by observations capable of providing detailed energy spectra for narrow orbital phase intervals (Δϕ≪0.1\Delta\phi\ll 0.1).Comment: 14 pages, 26 figures, accepted for publication in MNRAS, submitted on July 11, 200

    Gamma-ray emission from massive stars interacting with AGN jets

    Get PDF
    Dense populations of stars surround the nuclear regions of galaxies. In active galactic nuclei, these stars can interact with the relativistic jets launched by the supermasive black hole. In this work, we study the interaction of early-type stars with relativistic jets in active galactic nuclei. A bow-shaped double-shock structure is formed as a consequence of the interaction of the jet and the stellar wind of each early-type star. Particles can be accelerated up to relativistic energies in these shocks and emit high-energy radiation. We compute, considering different stellar densities of the galactic core, the gamma-ray emission produced by non-thermal radiative processes. This radiation may be significant in some cases, and its detection might yield valuable information on the properties of the stellar population in the galaxy nucleus, as well as on the relativistic jet. This emission is expected to be particularly relevant for nearby non-blazar sources.Comment: Accepted for publication on MNRAS (15 pages, 9 figures

    Transient gamma-ray emission from Cygnus X-3

    Full text link
    The high-mass microquasar Cygnus X-3 has been recently detected in a flaring state by the gamma-ray satellites Fermi and Agile. In the present contribution, we study the high-energy emission from Cygnus X-3 through a model based on the interaction of clumps from the Wolf-Rayet wind with the jet. The clumps inside the jet act as obstacles in which shocks are formed leading to particle acceleration and non-thermal emission. We model the high energy emission produced by the interaction of one clump with the jet and briefly discus the possibility of many clumps interacting with the jet. From the characteristics of the considered scenario, the produced emission could be flare-like due to discontinuous clump penetration, with the GeV long-term activity explained by changes in the wind properties.Comment: Contribution to the proceedings of the 25th Texas Symposium on Relativistic Astrophysics - TEXAS 2010, December 06-10, Heidelberg, German

    Gamma rays from cloud penetration at the base of AGN jets

    Full text link
    Dense and cold clouds seem to populate the broad line region surrounding the central black hole in AGNs. These clouds could interact with the AGN jet base and this could have observational consequences. We want to study the gamma-ray emission produced by these jet-cloud interactions, and explore under which conditions this radiation would be detectable. We investigate the hydrodynamical properties of jet-cloud interactions and the resulting shocks, and develop a model to compute the spectral energy distribution of the emission generated by the particles accelerated in these shocks. We discuss our model in the context of radio-loud AGNs, with applications to two representative cases, the low-luminous Centaurus A, and the powerful 3C 273. Some fraction of the jet power can be channelled to gamma-rays, which would be likely dominated by synchrotron self-Compton radiation, and show typical variability timescales similar to the cloud lifetime within the jet, which is longer than several hours. Many clouds can interact with the jet simultaneously leading to fluxes significantly higher than in one interaction, but then variability will be smoothed out. Jet-cloud interactions may produce detectable gamma-rays in non-blazar AGNs, of transient nature in nearby low-luminous sources like Cen A, and steady in the case of powerful objects of FR II type.Comment: Accepted for publication in A&A (9 pages, 7 figures

    High-energy flares from jet-clump interactions

    Get PDF
    High-mass microquasars are binary systems composed by a massive star and a compact object from which relativistic jets are launched. Regarding the companion star, observational evidence supports the idea that winds of hot stars are formed by clumps. Then, these inhomogeneities may interact with the jets producing a flaring activity. In the present contribution we study the interaction between a jet and a clump of the stellar wind in a high-mass microquasar. This interaction produces a shock in the jet, where particles may be accelerated up to relativistic energies. We calculate the spectral energy distributions of the dominant non-thermal processes: synchrotron radiation, inverse Compton scattering, and proton-proton collisions. Significant levels of X- and gamma-ray emission are predicted, with luminosities in the different domains up to ~ 10^{34} - 10^{35} erg/s on a timescale of about ~ 1 h. Finally, jet-clump interactions in high-mass microquasars could be detectable at high energies. These phenomena may be behind the fast TeV variability found in some high-mass X-ray binary systems, such as Cygnus X-1, LS 5039 and LS I+61 303. In addition, our model can help to derive information on the properties of jets and clumpy winds.Comment: Proceeding of the conference "High Energy Phenomena in Massive Stars". Jaen (Spain), 2-5 February 200
    corecore