519 research outputs found

    Reconstructing the Initial Density Field of the Local Universe: Method and Test with Mock Catalogs

    Full text link
    Our research objective in this paper is to reconstruct an initial linear density field, which follows the multivariate Gaussian distribution with variances given by the linear power spectrum of the current CDM model and evolves through gravitational instability to the present-day density field in the local Universe. For this purpose, we develop a Hamiltonian Markov Chain Monte Carlo method to obtain the linear density field from a posterior probability function that consists of two components: a prior of a Gaussian density field with a given linear spectrum, and a likelihood term that is given by the current density field. The present-day density field can be reconstructed from galaxy groups using the method developed in Wang et al. (2009a). Using a realistic mock SDSS DR7, obtained by populating dark matter haloes in the Millennium simulation with galaxies, we show that our method can effectively and accurately recover both the amplitudes and phases of the initial, linear density field. To examine the accuracy of our method, we use NN-body simulations to evolve these reconstructed initial conditions to the present day. The resimulated density field thus obtained accurately matches the original density field of the Millennium simulation in the density range 0.3 <= rho/rho_mean <= 20 without any significant bias. Especially, the Fourier phases of the resimulated density fields are tightly correlated with those of the original simulation down to a scale corresponding to a wavenumber of ~ 1 h/Mpc, much smaller than the translinear scale, which corresponds to a wavenumber of ~ 0.15 h\Mpc.Comment: 43 pages, 15 figures, accepted for publication in Ap

    Properties of Galaxy Groups in the SDSS: I.-- The Dependence of Colour, Star Formation, and Morphology on Halo Mass

    Full text link
    Using a large galaxy group catalogue constructed from the SDSS, we investigate the correlation between various galaxy properties and halo mass. We split the population of galaxies in early types, late types, and intermediate types, based on their colour and specific star formation rate. At fixed luminosity, the early type fraction increases with increasing halo mass. Most importantly, this mass dependence is smooth and persists over the entire mass range probed, without any break or feature at any mass scale. We argue that the previous claim of a characteristic feature on galaxy group scales is an artefact of the environment estimators used. At fixed halo mass, the luminosity dependence of the type fractions is surprisingly weak: galaxy type depends more strongly on halo mass than on luminosity. We also find that the early type fraction decreases with increasing halo-centric radius. Contrary to previous studies, we find that this radial dependence is also present in low mass haloes. The properties of satellite galaxies are strongly correlated with those of their central galaxy. In particular, the early type fraction of satellites is significantly higher in a halo with an early type central galaxy than in a halo of the same mass but with a late type central galaxy. This phenomenon, which we call `galactic conformity', is present in haloes of all masses and for satellites of all luminosities. Finally, the fraction of intermediate type galaxies is always ~20 percent, independent of luminosity, independent of halo mass, independent of halo-centric radius, and independent of whether the galaxy is a central galaxy or a satellite galaxy. We discuss the implications of all these findings for galaxy formation and evolution.Comment: 28 pages, 15 figures. Submitted for publication in MNRA

    Observational Evidence for an Age Dependence of Halo Bias

    Full text link
    We study the dependence of the cross-correlation between galaxies and galaxy groups on group properties. Confirming previous results, we find that the correlation strength is stronger for more massive groups, in good agreement with the expected mass dependence of halo bias. We also find, however, that for groups of the same mass, the correlation strength depends on the star formation rate (SFR) of the central galaxy: at fixed mass, the bias of galaxy groups decreases as the SFR of the central galaxy increases. We discuss these findings in light of the recent findings by Gao et al (2005) that halo bias depends on halo formation time, in that halos that assemble earlier are more strongly biased. We also discuss the implication for galaxy formation, and address a possible link to galaxy conformity, the observed correlation between the properties of satellite galaxies and those of their central galaxy.Comment: 4 pages, 4 figures, Accepted for publication in ApJ Letters. Figures 3 and 4 replaced. The bias dependence on the central galaxy luminosity is omitted due to its sensitivity to the mass mode

    Alignments of galaxies within cosmic filaments from SDSS DR7

    Full text link
    Using a sample of galaxy groups selected from the Sloan Digital Sky Survey Data Release 7 (SDSS DR7), we examine the alignment between the orientation of galaxies and their surrounding large scale structure in the context of the cosmic web. The latter is quantified using the large-scale tidal field, reconstructed from the data using galaxy groups above a certain mass threshold. We find that the major axes of galaxies in filaments tend to be preferentially aligned with the directions of the filaments, while galaxies in sheets have their major axes preferentially aligned parallel to the plane of the sheets. The strength of this alignment signal is strongest for red, central galaxies, and in good agreement with that of dark matter halos in N-body simulations. This suggests that red, central galaxies are well aligned with their host halos, in quantitative agreement with previous studies based on the spatial distribution of satellite galaxies. There is a luminosity and mass dependence that brighter and more massive galaxies in filaments and sheets have stronger alignment signals. We also find that the orientation of galaxies is aligned with the eigenvector associated with the smallest eigenvalue of the tidal tensor. These observational results indicate that galaxy formation is affected by large-scale environments, and strongly suggests that galaxies are aligned with each other over scales comparable to those of sheets and filaments in the cosmic web.Comment: 11 pages, 10 figures, accepted for publication in Ap

    Spin alignments of spiral galaxies within the large-scale structure from SDSS DR7

    Full text link
    Using a sample of spiral galaxies selected from the Sloan Digital Sky Survey Data Release 7 (SDSS DR7) and Galaxy Zoo 2 (GZ2), we investigate the alignment of spin axes of spiral galaxies with their surrounding large scale structure, which is characterized by the large-scale tidal field reconstructed from the data using galaxy groups above a certain mass threshold. We find that the spin axes of only have weak tendency to be aligned with (or perpendicular to) the intermediate (or minor) axis of the local tidal tensor. The signal is the strongest in a \cluster environment where all the three eigenvalues of the local tidal tensor are positive. Compared to the alignments between halo spins and local tidal field obtained in N-body simulations, the above observational results are in best agreement with those for the spins of inner regions of halos, suggesting that the disk material traces the angular momentum of dark matter halos in the inner regions.Comment: 8 pages, 7 figures, accepted for publication in Ap

    The Alignment between Satellites and Central Galaxies: Theory vs. Observations

    Get PDF
    Recent studies have shown that the distribution of satellite galaxies is preferentially aligned with the major axis of their central galaxy. The strength of this alignment has been found to depend strongly on the colours of the satellite and central galaxies, and only weakly on the mass of the halo in which the galaxies reside. In this paper we study whether these alignment signals, and their dependence on galaxy and halo properties, can be reproduced in a hierarchical structure formation model of a Λ\LambdaCDM concordance cosmology. To that extent we use a large NN-body simulation which we populate with galaxies following a semi-analytical model for galaxy formation. We find that if the orientation of the central galaxy is perfectly aligned with that of its dark matter halo, then the predicted central-satellite alignment signal is much stronger than observed. If, however, the minor axis of a central galaxy is perfectly aligned with the angular momentum vector of its dark matter halo, we can accurately reproduce the observed alignment strength as function of halo mass and galaxy color. Although this suggests that the orientation of central galaxies is governed by the angular momentum of their dark matter haloes, we emphasize that any other scenario in which the minor axes of central galaxy and halo are misaligned by ∌40∘\sim 40^{\circ} (on average) will match the data equally well. Finally, we show that dependence of the alignment strength on the color of the central galaxy is most likely an artefact due to interlopers in the group catalogue. The dependence on the color of the satellite galaxies, on the other hand, is real and owes to the fact that red satellites are associated with subhaloes that were more massive at their time of accretion.Comment: 13 Pages, 10 Figures, one figure replaced. added in discussion about comparison with others results, Updated version to match accepted version to MNRA

    Stellar Ages and Metallicities of Central and Satellite Galaxies: Implications for Galaxy Formation and Evolution

    Full text link
    Using a large SDSS galaxy group catalogue, we study how the stellar ages and metallicities of central and satellite galaxies depend on stellar mass and halo mass. We find that satellites are older and metal-richer than centrals of the same stellar mass. In addition, the slopes of the age-stellar mass and metallicity-stellar mass relations are found to become shallower in denser environments. This is due to the fact that the average age and metallicity of low mass satellite galaxies increase with the mass of the halo in which they reside. A comparison with the semi-analytical model of Wang et al. (2008) shows that it succesfully reproduces the fact that satellites are older than centrals of the same stellar mass and that the age difference increases with the halo mass of the satellite. This is a consequence of strangulation, which leaves the stellar populations of satellites to evolve passively, while the prolonged star formation activity of centrals keeps their average ages younger. The resulting age offset is larger in more massive environments because their satellites were accreted earlier. The model fails, however, in reproducing the halo mass dependence of the metallicities of low mass satellites, yields metallicity-stellar mass and age-stellar mass relations that are too shallow, and predicts that satellite galaxies have the same metallicities as centrals of the same stellar mass, in disagreement with the data. We argue that these discrepancies are likely to indicate the need to (i) modify the recipes of both supernova feedback and AGN feedback, (ii) use a more realistic description of strangulation, and (iii) include a proper treatment of the tidal stripping, heating and destruction of satellite galaxies. [Abridged]Comment: 20 pages, 12 figures, submitted for publication in MNRA

    Star Formation and Stellar Mass Assembly in Dark Matter Halos: From Giants to Dwarfs

    Full text link
    The empirical model of Lu et al. 2014 is updated with recent data and used to study galaxy star formation and assembly histories. At z>2z > 2, the predicted galaxy stellar mass functions are steep, and a significant amount of star formation is hosted by low-mass haloes that may be missed in current observations. Most of the stars in cluster centrals formed earlier than z≈2z\approx 2 but have been assembled much later. Milky Way mass galaxies have had on-going star formation without significant mergers since z≈2z\approx 2, and are thus free of significant (classic) bulges produced by major mergers. In massive clusters, stars bound in galaxies and scattered in the halo form a homogeneous population that is old and with solar metallicity. In contrast, in Milky Way mass systems the two components form two distinct populations, with halo stars being older and poorer in metals by a factor of ≈3\approx 3. Dwarf galaxies in haloes with Mh<1011h−1M⊙M_{\rm h} < 10^{11}h^{-1}M_{\odot} have experienced a star formation burst accompanied by major mergers at z>2z > 2, followed by a nearly constant star formation rate after z=1z = 1. The early burst leaves a significant old stellar population that is distributed in spheroids.Comment: 17 pages, 17 figure
    • 

    corecore