15 research outputs found

    A Novel ELISA to Detect Methionine Sulfoxide−Containing Apolipoprotein A−I

    Get PDF
    Atherosclerosis manifests a state of increased oxidative stress characterized by comparable lipid and protein oxidation in the affected arterial wall. While oxidative modification of low density lipoprotein (LDL) has been extensively studied, increasing attention has been focused recently on oxidation of high-density lipoproteins (HDL) and its functional consequences in relation to atherosclerosis. Oxidative modification is thought to generate “dysfunctional” HDL that has lost anti-atherosclerotic activities, including the ability to remove cholesterol from lipid-laden cells. Therefore, there has been much interest in the detection of oxidized HDL. Unfortunately, available methods to detect oxidized HDL are limited at present, in part because oxidative modification of HDL is a complex process and ‘oxidized HDL’ is not a chemically defined entity. What is known however is that conversion of methionine (Met) residues of apolipoprotein (apo) A-I to methionine sulfoxide (MetO) is a process that occurs commonly as HDL undergoes oxidative modification. For example, human apoA-I+16 (containing MetO86 or MetO112) and apoA-I+32 (MetO86 plus MetO112) are generated when apoA-I reacts with lipid hydroperoxides formed as a consequence of the lipoprotein being exposed to 1e−oxidants. The formation of MetO in apoA−I induced by 2e−oxidants (i.e., hydrogen peroxide, hypochlorous acid or myeloperoxidase/hydrogen peroxide/chloride system) is associated with an impaired ability of the apolipoprotein to facilitate reactions relevant to reverse cholesterol transport. In addition, a previous study has suggested the plasma content of apoA-I+32 to be increased in certain subjects that have an increased risk to develop cardiovascular disease (CVD). Moreover, the MetO content in circulating, HDL−associated apoA−I is elevated in type 1 diabetes, a disorder commonly associated with increased oxidative stress and a risk factor for atherosclerosis. Therefore, in the present study, an existing HPLC method was applied to HDL samples from the Fletcher−Challenge study, a nested case control study, to test the potential usefulness of MetO-containing apoA-I as a marker of oxidative stress and/or CVD in a general population. Plasma samples whose HDL contained detectable apoA-I+16 and/or apoA-I+32 had significantly elevated levels of F2-isoprostanes, a marker of in vivo lipid oxidation, consistent with MetO-containing apoA-I being a useful marker of in vivo protein oxidation. Despite this however, there was no significant difference between controls and cases in their concentrations of HDL apoA-I+16 and apoA-I+32 or F2-isoprostanes, suggesting that markers of protein and lipid oxidation are not associated with the risk of coronary heart disease (CHD) in this general population. A limitation of the Fletcher−Challenge study was that only 22% of the 534 HDL samples analyzed contained apoA-I+16 and/or apoA-I+32. In addition, the HPLC−based method used is expensive and time−consuming and may lack the sensitivity needed for apolipoproteins to clinical studies. Thus, a mouse monoclonal anti-human apoA-I+32 antibody (MOA−1) was raised using HPLC−purified apoA-I+32 as immunogen. A sensitive ELISA was then developed using a commercial anti-human apoA-I monoclonal antibody as capture and biotinylated MOA−1 as detection antibody, respectively. The assay detected lipid−free HPLC−purified human apoA-I+32 in a concentration-dependent manner and with a significantly lower limit of detection (i.e., 3 ng/mL) than the HPLC method (1 μg/mL). The ELISA also detected lipid-free apoA-I modified by 2e-oxidants (hydrogen peroxide, hypochlorous acid, peroxynitrite), and HDL oxidized by 1e- or 2e-oxidants and present in buffer or human plasma. Moreover, the extent of recognition of MetO by MOA−1 increased with increasing numbers of MetO in apoA−I, as assessed by the experiments with H2O2−oxidized forms of apoA−I mutants, in which one, two or three Met residues were replaced with Leu. Their detection was concentration-dependent, reproducible, and exhibited a linear response over a physiologically plausible range of concentrations of oxidized HDL. In contrast, MOA-I failed to recognize native apoA-I, native apoA-II, apoA-I modified by hydroxyl radicals or metal ions, or LDL modified by 2e-oxidants. Furthermore, MOA−1 did not detect other Met−containing proteins oxidized by either hypochlorous acid or hydrogen peroxide. Taken together, the results showed that recognition of oxidized proteins by MOA−1 is limited to MetO contained in apoA−I. Finally, in a pilot study, plasma samples obtained from subjects with coronary artery disease (CAD) proven by angiography, and samples from CAD patients undergoing percutaneous coronary intervention (PCI) were analyzed by the ELISA. The preliminary data obtained showed elevated levels of MetO-containing apoA-I in plasma samples of CAD patients compared to those of corresponding control subjects. Unexpectedly, levels of MetOcontaining apoA-I decreased PCI compared to before PCI. A possible explanation for these results is that HDL−associated apoA−I become displaced by acute phase proteins, such as serum amyloid A, in response to PCI. In summary, the ELISA developed here specifically detects apoA-I containing MetO in HDL and human plasma. As such it may provide a useful tool for investigating the relationship between oxidized HDL and CAD

    Truncating SRCAP variants outside the Floating-Harbor syndrome locus cause a distinct neurodevelopmental disorder with a specific DNA methylation signature

    Get PDF
    Truncating variants in exons 33 and 34 of the SNF2-related CREBBP activator protein (SRCAP) gene cause the neurodevelopmental disorder (NDD) Floating-Harbor syndrome (FLHS), characterized by short stature, speech delay, and facial dysmorphism. Here, we present a cohort of 33 individuals with clinical features distinct from FLHS and truncating (mostly de novo) SRCAP variants either proximal (n = 28) or distal (n = 5) to the FLHS locus. Detailed clinical characterization of the proximal SRCAP individuals identified shared characteristics: developmental delay with or without intellectual disability, behavioral and psychiatric problems, non-specific facial features, musculoskeletal issues, and hypotonia. Because FLHS is known to be associated with a unique set of DNA methylation (DNAm) changes in blood, a DNAm signature, we investigated whether there was a distinct signature associated with our affected individuals. A machine-learning model, based on the FLHS DNAm signature, negatively classified all our tested subjects. Comparing proximal variants with typically developing controls, we identified a DNAm signature distinct from the FLHS signature. Based on the DNAm and clinical data, we refer to the condition as "non-FLHS SRCAP-related NDD.'' All five distal variants classified negatively using the FLHS DNAm model while two classified positively using the proximal model. This suggests divergent pathogenicity of these variants, though clinically the distal group presented with NDD, similar to the proximal SRCAP group. In summary, for SRCAP, there is a clear relationship between variant location, DNAm profile, and clinical phenotype. These results highlight the power of combined epigenetic, molecular, and clinical studies to identify and characterize genotype-epigenotype-phenotype correlations.Genetics of disease, diagnosis and treatmen

    Cerebral visual impairment: from clinic to genetics

    Get PDF
    Contains fulltext : 151708.pdf (publisher's version ) (Open Access)Radboud Universiteit Nijmegen, 3 februari 2016Promotor : Cremers, F.P.M. Co-promotores : Boonstra, N.F., Vries, L.B.A. d

    Chromosomal aberrations in cerebral visual impairment

    No full text
    Item does not contain fulltextBACKGROUND: Cerebral visual impairment (CVI) is a disorder in projection and/or interpretation of the visual input in the brain and accounts for 27% of the visually impaired children. AIM: A large cohort of patients with CVI was investigated in order to ascertain the relevance of chromosomal aberrations in the etiology of this disorder. METHODS: 607 patients with CVI and a visual acuity </=0.3 were assessed for the presence of a chromosomal aberration retrospectively. The observed aberrations were classified for pathogenicity. RESULTS: A total of 98 chromosomal aberrations were found in 79 persons (13%) of the cohort. In nine persons it was not possible to classify the clinical implication of the aberration, due to lack of detailed information. In 70 persons it was possible to classify the aberration for causality: in 41 patients the aberration was associated with CVI, in 16 it was unknown and in 13 the aberration was unlikely to be associated with CVI. For four aberrations, present in 26 patients, the association with CVI has been reported before: trisomy 21, 1p36 deletion syndrome, 17p13.3 deletion syndrome (Miller-Dieker syndrome) and 22q13.3 deletion syndrome (Phelan-McDermid syndrome). The chromosomal aberrations in another 15 patients were for the first time associated with CVI. CONCLUSIONS: Chromosomal aberrations associated with CVI were found in 7% (41/607) of patients, of which 37% (15/41) have not been reported before in association with CVI. Therefore, in patients with CVI chromosomal investigations should be routinely performed to warrant a good clinical diagnosis and counseling

    An Expanded Multi-Organ Disease Phenotype Associated with Mutations in YARS

    Get PDF
    Contains fulltext : 182610.pdf (publisher's version ) (Open Access)Whole exome sequence analysis was performed in a Swedish mother-father-affected proband trio with a phenotype characterized by progressive retinal degeneration with congenital nystagmus, profound congenital hearing impairment, primary amenorrhea, agenesis of the corpus callosum, and liver disease. A homozygous variant c.806T > C, p.(F269S) in the tyrosyl-tRNA synthetase gene (YARS) was the only identified candidate variant consistent with autosomal recessive inheritance. Mutations in YARS have previously been associated with both autosomal dominant Charcot-Marie-Tooth syndrome and a recently reported autosomal recessive multiorgan disease. Herein, we propose that mutations in YARS underlie another clinical phenotype adding a second variant of the disease, including retinitis pigmentosa and deafness, to the spectrum of YARS-associated disorders

    Putative digenic inheritance of heterozygous RP1L1 and C2orf71 null mutations in syndromic retinal dystrophy

    No full text
    Contains fulltext : 174798.pdf (Publisher’s version ) (Open Access)BACKGROUND: Retinitis pigmentosa (RP) is the most common cause of inherited retinal degeneration and can occur in non-syndromic and syndromic forms. Syndromic RP is accompanied by other symptoms such as intellectual disability, hearing loss, or congenital abnormalities. Both forms are known to exhibit complex genetic interactions that can modulate the penetrance and expressivity of the phenotype. MATERIALS AND METHODS: In an individual with atypical RP, hearing loss, ataxia and cerebellar atrophy, whole exome sequencing was performed. The candidate pathogenic variants were tested by developing an in vivo zebrafish model and assaying for retinal and cerebellar integrity. RESULTS: Exome sequencing revealed a complex heterozygous protein-truncating mutation in RP1L1, p.[(Lys111Glnfs*27; Gln2373*)], and a heterozygous nonsense mutation in C2orf71, p.(Ser512*). Mutations in both genes have previously been implicated in autosomal recessive non-syndromic RP, raising the possibility of a digenic model in this family. Functional testing in a zebrafish model for two key phenotypes of the affected person showed that the combinatorial suppression of rp1l1 and c2orf71l induced discrete pathology in terms of reduction of eye size with concomitant loss of rhodopsin in the photoreceptors, and disorganization of the cerebellum. CONCLUSIONS: We propose that the combination of heterozygous loss-of-function mutations in these genes drives syndromic retinal dystrophy, likely through the genetic interaction of at least two loci. Haploinsufficiency at each of these loci is insufficient to induce overt pathology

    Destined to fail : management of the New South Wales railways 1877-1995

    No full text
    IMPORTANCE: The NMNAT1 gene was recently found to be mutated in a subset of patients with Leber congenital amaurosis and macular atrophy. The most prevalent NMNAT1 variant was p.Glu257Lys, which was observed in 38 of 106 alleles (35.8%). On the basis of functional assays, it was deemed a severe variant. OBSERVATIONS: The p.Glu257Lys variant was 80-fold less frequent in a homozygous state in patients with Leber congenital amaurosis than predicted based on its heterozygosity frequency in the European American population. Moreover, we identified this variant in a homozygous state in a patient with no ocular abnormalities. CONCLUSIONS AND RELEVANCE: On the basis of these results, the p.Glu257Lys variant is considered not fully penetrant. Homozygotes of the p.Glu257Lys variant in most persons are therefore not associated with ocular disease. Consequently, genetic counselors should exercise great caution in the interpretation of this variant

    Novel genetic causes for cerebral visual impairment

    No full text
    Cerebral visual impairment (CVI) is a major cause of low vision in children due to impairment in projection and/or interpretation of the visual input in the brain. Although acquired causes for CVI are well known, genetic causes underlying CVI are largely unidentified. DNAs of 25 patients with CVI and intellectual disability, but without acquired (eg, perinatal) damage, were investigated by whole-exome sequencing. The data were analyzed for de novo, autosomal-recessive, and X-linked variants, and subsequently classified into known, candidate, or unlikely to be associated with CVI. This classification was based on the Online Mendelian Inheritance in Man database, literature reports, variant characteristics, and functional relevance of the gene. After classification, variants in four genes known to be associated with CVI (AHDC1, NGLY1, NR2F1, PGAP1) in 5 patients (20%) were identified, establishing a conclusive genetic diagnosis for CVI. In addition, in 11 patients (44%) with CVI, variants in one or more candidate genes were identified (ACP6, AMOT, ARHGEF10L, ATP6V1A, DCAF6, DLG4, GABRB2, GRIN1, GRIN2B, KCNQ3, KCTD19, RERE, SLC1A1, SLC25A16, SLC35A2, SOX5, UFSP2, UHMK1, ZFP30). Our findings show that diverse genetic causes underlie CVI, some of which will provide insight into the biology underlying this disease process

    TRIO loss of function is associated with mild intellectual disability and affects dendritic branching and synapse function

    No full text
    Recently, we marked TRIO for the first time as a candidate gene for intellectual disability (ID). Across diverse vertebrate species, TRIO is a well-conserved Rho GTPase regulator that is highly expressed in the developing brain. However, little is known about the specific events regulated by TRIO during brain development and its clinical impact in humans when mutated. Routine clinical diagnostic testing identified an intragenic de novo deletion of TRIO in a boy with ID. Targeted sequencing of this gene in over 2300 individuals with ID, identified three additional truncating mutations. All index cases had mild to borderline ID combined with behavioral problems consisting of autistic, hyperactive and/or aggressive behavior. Studies in dissociated rat hippocampal neurons demonstrated the enhancement of dendritic formation by suppressing endogenous TRIO, and similarly decreasing endogenous TRIO in organotypic hippocampal brain slices significantly increased synaptic strength by increasing functional synapses. Together, our findings provide new mechanistic insight into how genetic deficits in TRIO can lead to early neuronal network formation by directly affecting both neurite outgrowth and synapse development
    corecore