10,533 research outputs found

    Reproducibility of electrical caries measurements: A technical problem?

    Get PDF
    The currently available instrument for electrical detection of occlusal caries lesions {[}Electronic Caries Monitor (ECM)] uses a site-specific measurement with co-axial air drying. The reproducibility of this method has been reported to be fair to good. It was noticed that the measurement variation of this technique appeared to be non-random. It was the aim of this study to analyse how such a non-random reproducibility pattern arises and whether it could be observed for other operators and ECM models. Analysis of hypothetical measurement pairs showed that the pattern was related to measurements at the high and low end of the measurement range for the instrument. Data sets supplied by other researchers to a varying degree showed signs of a similar non-random pattern. These data sets were acquired at different locations, by different operators and using 3 different ECM models. The frequency distribution of measurements in all cases showed a single or double end-peaked distribution shape. It was concluded that the pattern was a general feature of the measurement method. It was tentatively attributed to several characteristics such as a high value censoring, insufficient probe contact and unpredictable probe contact. A different measurement technique, with an improved probe contact, appears to be advisable. Copyright (C) 2005 S. Karger AG, Basel

    Motivic Serre invariants, ramification, and the analytic Milnor fiber

    Full text link
    We show how formal and rigid geometry can be used in the theory of complex singularities, and in particular in the study of the Milnor fibration and the motivic zeta function. We introduce the so-called analytic Milnor fiber associated to the germ of a morphism f from a smooth complex algebraic variety X to the affine line. This analytic Milnor fiber is a smooth rigid variety over the field of Laurent series C((t)). Its etale cohomology coincides with the singular cohomology of the classical topological Milnor fiber of f; the monodromy transformation is given by the Galois action. Moreover, the points on the analytic Milnor fiber are closely related to the motivic zeta function of f, and the arc space of X. We show how the motivic zeta function can be recovered as some kind of Weil zeta function of the formal completion of X along the special fiber of f, and we establish a corresponding Grothendieck trace formula, which relates, in particular, the rational points on the analytic Milnor fiber over finite extensions of C((t)), to the Galois action on its etale cohomology. The general observation is that the arithmetic properties of the analytic Milnor fiber reflect the structure of the singularity of the germ f.Comment: Some minor errors corrected. The original publication is available at http://www.springerlink.co

    Observations of microquasars with the MAGIC telescope

    Full text link
    We report on the results from the observations in very high energy band (VHE, E_gamma > 100GeV) of the black hole X-ray binary (BHXB) Cygnus X-1. The observations were performed with the MAGIC telescope, for a total of 40 hours during 26 nights, spanning the period between June and November 2006. We report on the results of the searches for steady and variable gamma-ray signals, including the first experimental evidence for an intense flare, of duration between 1.5 and 24 hours.Comment: Contribution to the 30th ICRC, Merida Mexico, July 2007 on behalf of the MAGIC Collaboratio

    Properties of Galaxy Groups in the SDSS: II.- AGN Feedback and Star Formation Truncation

    Get PDF
    Successfully reproducing the galaxy luminosity function and the bimodality in the galaxy distribution requires a mechanism that can truncate star formation in massive haloes. Current models of galaxy formation consider two such truncation mechanisms: strangulation, which acts on satellite galaxies, and AGN feedback, which predominantly affects central galaxies. The efficiencies of these processes set the blue fraction of galaxies as function of galaxy luminosity and halo mass. In this paper we use a galaxy group catalogue extracted from the Sloan Digital Sky Survey (SDSS) to determine these fractions. To demonstrate the potential power of this data as a benchmark for galaxy formation models, we compare the results to the semi-analytical model for galaxy formation of Croton et al. (2006). Although this model accurately fits the global statistics of the galaxy population, as well as the shape of the conditional luminosity function, there are significant discrepancies when the blue fraction of galaxies as a function of mass and luminosity is compared between the observations and the model. In particular, the model predicts (i) too many faint satellite galaxies in massive haloes, (ii) a blue fraction of satellites that is much too low, and (iii) a blue fraction of centrals that is too high and with an inverted luminosity dependence. In the same order, we argue that these discrepancies owe to (i) the neglect of tidal stripping in the semi-analytical model, (ii) the oversimplified treatment of strangulation, and (iii) improper modeling of dust extinction and/or AGN feedback. The data presented here will prove useful to test and calibrate future models of galaxy formation and in particular to discriminate between various models for AGN feedback and other star formation truncation mechanisms.Comment: 16 pages, 5 figures, submitted to MNRA

    Progress report on the ultra heavy cosmic ray experiment (AO178)

    Get PDF
    The Ultra Heavy Cosmic Ray Experiment (UHCRE) is based on a modular array of 192 side-viewing solid state nuclear track detector stacks. These stacks were mounted in sets of four in 48 pressure vessels employing sixteen peripheral Long Duration Exposure Facility (LDEF) trays. The extended duration of the LDEF mission has resulted in a greatly enhanced scientific yield from the UHCRE. The geometry factor for high energy cosmic ray nuclei, allowing for Earth shadowing, was 30 sq m-sr, giving a total exposure factor of 170 sq m-sr-y at an orbital inclination of 28.4 degrees. Scanning results indicate that about 3000 cosmic ray nuclei in the charge region with Z greater than 65 were collected. This sample is more than ten times the current world data in the field (taken to be the data set from the HEAO-3 mission plus that from the Ariel-6 mission) and is sufficient to provide the world's first statistically significant sample of actinide (Z greater than 88) cosmic rays. Results to date are presented including details of ultra-heavy cosmic ray nuclei, analysis of pre-flight and post-flight calibration events and details of track response in the context of detector temperature history. The integrated effect of all temperature and age related latent track variations cause a maximum charge shift of +/- 0.8 e for uranium and +/- 0.6 e for the platinum-lead group. The precision of charge assignment as a function of energy is derived and evidence for remarkably good charge resolution achieved in the UHCRE is considered. Astrophysical implications of the UHCRE charge spectrum are discussed

    The LDEF ultra heavy cosmic ray experiment

    Get PDF
    The LDEF Ultra Heavy Cosmic Ray Experiment (UHCRE) used 16 side viewing LDEF trays giving a total geometry factor for high energy cosmic rays of 30 sq m sr. The total exposure factor was 170 sq m sr y. The experiment is based on a modular array of 192 solid state nuclear track detector stacks, mounted in sets of four in 48 pressure vessels. The extended duration of the LDEF mission has resulted in a greatly enhanced potential scientific yield from the UHCRE. Initial scanning results indicate that at least 1800 cosmic ray nuclei with Z greater than 65 were collected, including the world's first statistically significant sample of actinides. Post flight work to date and the current status of the experiment are reviewed

    Collective patterns arising out of spatio-temporal chaos

    Full text link
    We present a simple mathematical model in which a time averaged pattern emerges out of spatio-temporal chaos as a result of the collective action of chaotic fluctuations. Our evolution equation possesses spatial translational symmetry under a periodic boundary condition. Thus the spatial inhomogeneity of the statistical state arises through a spontaneous symmetry breaking. The transition from a state of homogeneous spatio-temporal chaos to one exhibiting spatial order is explained by introducing a collective viscosity which relates the averaged pattern with a correlation of the fluctuations.Comment: 11 pages (Revtex) + 5 figures (postscript

    Isolated effective coherence (iCoh): causal information flow excluding indirect paths

    Full text link
    A problem of great interest in real world systems, where multiple time series measurements are available, is the estimation of the intra-system causal relations. For instance, electric cortical signals are used for studying functional connectivity between brain areas, their directionality, the direct or indirect nature of the connections, and the spectral characteristics (e.g. which oscillations are preferentially transmitted). The earliest spectral measure of causality was Akaike's (1968) seminal work on the noise contribution ratio, reflecting direct and indirect connections. Later, a major breakthrough was the partial directed coherence of Baccala and Sameshima (2001) for direct connections. The simple aim of this study consists of two parts: (1) To expose a major problem with the partial directed coherence, where it is shown that it is affected by irrelevant connections to such an extent that it can misrepresent the frequency response, thus defeating the main purpose for which the measure was developed, and (2) To provide a solution to this problem, namely the "isolated effective coherence", which consists of estimating the partial coherence under a multivariate auto-regressive model, followed by setting all irrelevant associations to zero, other than the particular directional association of interest. Simple, realistic, toy examples illustrate the severity of the problem with the partial directed coherence, and the solution achieved by the isolated effective coherence. For the sake of reproducible research, the software code implementing the methods discussed here (using lazarus free-pascal "www.lazarus.freepascal.org"), including the test data as text files, are freely available at: https://sites.google.com/site/pascualmarqui/home/icoh-isolated-effective-coherenceComment: 2014-02-21 pre-print, technical report, KEY Institute for Brain-Mind Research, University of Zurich, et a
    corecore