683 research outputs found

    Managing Cushing's disease: the state of the art.

    Get PDF
    Cushing's disease is a rare chronic disease caused by a pituitary adenoma, which leads to excess secretion of adrenocorticotropic hormone (ACTH). The over-production of ACTH leads to hyperstimulation of the adrenal glands and a chronic excess of cortisol, resulting in the signs and symptoms of a severe clinical state (Cushing's syndrome) that leads to significant morbidity, negative impacts on the patient's quality of life, and, if untreated, increased mortality. The management of patients with Cushing's disease is complicated by the heterogeneity of the condition, with signs and symptoms that overlap with those of other diseases, and high subclinical incidence rates. Controversies surrounding the tests used for screening and identifying patients with Cushing's disease add to the challenge of patient management. Surgical intervention to remove the adenoma is the first-line treatment for patients with Cushing's disease, but medical therapies are useful in patients who relapse or are unsuitable for surgery. The recent introduction of pasireotide, the first pituitary-directed medical therapy, expands the number of treatment options available for patients with Cushing's disease. This state-of-the-art review aims to provide an overview of the most recent scientific research and clinical information regarding Cushing's disease. Continuing research into improving the diagnosis and treatment of Cushing's disease will help to optimize patient management

    Defects of steroidogenesis

    Get PDF
    In the biosynthesis of steroid hormones the neutral lipid cholesterol, a normal constituent of lipid bilayers is transformed via a series of hydroxylation, oxidation, and reduction steps into a vast array of biologically active compounds: mineralocorticoids, glucocorticoids, and sex hormones. Glucocorticoids regulate many aspects of metabolism and immune function, whereas mineralocorticoids help maintain blood volume and control renal excretion of electrolytes. Sex hormones are essential for sex differentiation in male and support reproduction. They include androgens, estrogens, and progestins. A block in the pathway of steroid biosynthesis leads to the lack of hormones downstream and accumulation of the upstream compounds that can activate other members of the steroid receptor family. This review deals with the clinical consequences of these block

    Effects of vanadyl complexes with acetylacetonate derivatives on non-tumor and tumor cell lines

    Get PDF
    Vanadium has a good therapeutic potential, as several biological effects, but few side effects, have been demonstrated. Evidence suggests that vanadium compounds could represent a new class of non-platinum, metal antitumor agents. In the present study, we aimed to characterize the antiproliferative activities of fluorescent vanadyl complexes with acetylacetonate derivates bearing asymmetric substitutions on the β-dicarbonyl moiety on different cell lines. The effects of fluorescent vanadyl complexes on proliferation and cell cycle modulation in different cell lines were detected by ATP content using the CellTiter-Glo Luminescent Assay and flow cytometry, respectively. Western blotting was performed to assess the modulation of mitogen-activated protein kinases (MAPKs) and relevant proteins. Confocal microscopy revealed that complexes were mainly localized in the cytoplasm, with a diffuse distribution, as in podocyte or a more aggregate conformation, as in the other cell lines. The effects of complexes on cell cycle were studied by cytofluorimetry and Western blot analysis, suggesting that the inhibition of proliferation could be correlated with a block in the G2/M phase of cell cycle and an increase in cdc2 phosphorylation. Complexes modulated mitogen-activated protein kinases (MAPKs) activation in a cell-dependent manner, but MAPK modulation can only partly explain the antiproliferative activity of these complexes. All together our results demonstrate that antiproliferative effects mediated by these compounds are cell type-dependent and involve the cdc2 and MAPKs pathway

    Chemical modulation of the 1-(Piperidin-4-yl)-1,3-dihydro-2h-benzo[d]imidazole-2-one scaffold as a novel NLRP3 inhibitor

    Get PDF
    In the search for new chemical scaffolds able to afford NLRP3 inflammasome inhibitors, we used a pharmacophore-hybridization strategy by combining the structure of the acrylic acid derivative INF39 with the 1-(piperidin-4-yl)1,3-dihydro-2H-benzo[d]imidazole-2-one substructure present in HS203873, a recently identified NLRP3 binder. A series of differently modulated benzo[d]imidazole-2-one derivatives were designed and synthesised. The obtained compounds were screened in vitro to test their ability to inhibit NLRP3-dependent pyroptosis and IL-1β release in PMA-differentiated THP-1 cells stimulated with LPS/ATP. The selected compounds were evaluated for their ability to reduce the ATPase activity of human recombinant NLRP3 using a newly developed assay. From this screening, compounds 9, 13 and 18, able to concentration-dependently inhibit IL-1β release in LPS/ATP-stimulated human macrophages, emerged as the most promising NLRP3 inhibitors of the series. Computational simulations were applied for building the first complete model of the NLRP3 inactive state and for identifying possible binding sites available to the tested compounds. The analyses led us to suggest a mechanism of protein–ligand binding that might explain the activity of the compounds
    • …
    corecore