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Abstract  

This work proposes a novel approach by which to consistently classify cysteine sites in 

proteins in terms of their reactivity toward dimethyl fumarate (DMF) and fumarate. 

Dimethyl fumarate-based drug products have been approved for use as oral treatments for 

psoriasis and relapsing-remitting multiple sclerosis in recent years. The adduction of DMF 

and its (re)active metabolites to certain cysteine residues in proteins is thought to underlie 

their effects. However, only a few receptors for these compounds have been discovered to 

date. Our approach takes advantage of the growing number of known DMF- and fumarate-

sensitive proteins and sites to perform analyses by combining the concepts of network 

theory, for protein structure analyses, and machine learning procedures. Wide-ranging and 

previously unforeseen variety was found in the analysis of the neighborhood composition 

(the first neighbors) of cysteine sites found in DMF- and fumarate-sensitive proteins. 

Furthermore, neighborhood composition has shown itself to be a network-type attribute 

that is endowed with remarkable predictive power when distinct classification algorithms 

are employed. In conclusion, when adopted in combination with other target 

identification/validation approaches, methods that are based on the analysis of cysteine 

site neighbors in proteins should provide useful information by which to decipher the mode 

of action of DMF-based drugs.  
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Significance of the study 

The adduction of dimethyl fumarate (DMF) and its (re)active metabolites to certain 

cysteine residues in proteins is thought to underlie the effects of DMF-based drug 

products. However, many more pharmacological targets (“acceptors” and “receptors”) for 

DMF-based drugs, than those that have been characterized thus far, should exist. This 

proof-of-concept study proposes a novel approach by which to consistently classify 

cysteine sites in terms of their reactivity towards DMF and fumarate. Our approach takes 

advantage of the growing number of known DMF- and fumarate-sensitive proteins and 

sites to perform analyses by combining concepts of network theory, for protein structure 

analyses, and machine learning procedures. In particular, neighborhood composition has 

been shown to be a network-type attribute that is endowed with remarkable predictive 

power. These findings could be instrumental in developing high-throughput and system-

oriented methods and tools by which to find pharmacological targets for DMF-based drug 

products.   
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In 1959, Schweckendiek W. first described the beneficial effects exerted by fumarate-

related compounds on psoriasis vulgaris.[1] Recent decades have seen further compelling 

evidence as to the therapeutic value of these agents being collected.[2-4] Moreover, drug 

products based on fumarate-related compounds have been developed and registered by 

many regulatory authorities. For example, Tecfidera® (Biogen-Idec) and Skilarence® 

(Almiral) are two distinct dimethyl fumarate (DMF)-only drug products that are available for 

the treatment of relapsing-remitting multiple sclerosis and psoriasis, respectively, in many 

countries. However, the mode of action of these agents still remains elusive.  

Dimethyl fumarate is converted into a set of metabolites following oral 

administration.[5] Monomethyl fumarate (MMF) and fumarate, which are formed from DMF 

via hydrolysis, have been shown to mimic responses to their parent compound both in vitro 

and in vivo,[3-11] and thus these compounds may contribute together to the effects of the 

DMF-based drug products. In addition, the pharmacological activity of these related 

compounds has been associated, at least in part, to their reactivity toward the thiol group 

in the side chain of certain cysteine residues in proteins.[10,11] In fact, cell exposure to DMF 

has been shown to increase the abundance of cysteine residues modified by DMF and/or 

its metabolites.[7,8,12,13] However, only few of these modifications have been clearly related 

to the effects of the DMF-based drugs thus far. For example, nuclear factor (erythroid-

derived 2)-like 2 (Nrf2) activation, which follows DMF adduction to certain cysteine 

residues in kelch-like ECH-associated protein (KEAP)-1-Nrf2 protein complexes, has been 

associated with the inhibition of dendritic cell maturation.[14] Moreover, the same type of 

covalent modification of cysteine residues in glyceraldehyde-3-phosfate dehydrogenase 

has been demonstrated to decrease enzymatic activity and could limit the 

development/activation of pro-inflammatory immune cells.[12] As for the KEAP-1-Nrf2- and 

glyceraldehyde-3-phosfate dehydrogenase-dependent responses, the adduction of DMF, 
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MMF and/or fumarate to cysteine sites in other proteins may also contribute to the effects 

exerted by DMF-based drug products. This hypothesis is consistent with the discovery of a 

number of cysteine sites in proteomes that are sensitive to these compounds.[8,12,13,15-17] 

However, the abundance of cysteine residues in proteomes,[18] means that there should be 

many more targets (“acceptors” and “receptors”) for DMF-related compounds than those 

that have been verified thus far. Therefore, further effort must be dedicated to 

comprehensively mapping the DMF-based drug-sensitive proteome.  

Our understanding of post-translational cysteine modifications has been enhanced by 

combining the methods and tools of computational and experimental proteomics. In 

particular, in silico analyses may well lead to intriguing hypotheses for more traditional 

studies. Therefore, the primary aim of this study is to demonstrate the performance of a 

novel approach for the classification (class prediction) of cysteine sites in proteins, 

according to their reactivity toward DMF and/or fumarate, with the long-term goal of better 

understanding the mode of action of DMF-based drug products. Reactivity of a cysteine 

site toward electrophiles depends on a number of site-specific attributes. Some of them 

are related to features of the microenvironment surrounding the cysteine site, which 

themselves are linked to the protein structure in a hierarchical manner. For example, the 

activating effect often demonstrated for basic residues in close proximity to cysteines is 

consistent with the evidence that the thiolate form of a thiol group is much more 

nucleophilic than its protonate counterpart, and is much more readily alkylated by 

electrophiles.[19-21] Thereby, sequence- and structure-based attributes have been 

investigated in order to discover novel predictors useful for developing classification 

methods.[21] For example, sequence-based method has been shown to predict fumarate 

adduction to cysteine sites,[22] while a structure-based method has been demonstrated to 

provide even more accurate predictions when applied to the same type of cysteine 
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modification.[23] This paper proposes a novel approach that uses the study of site 

neighbors to predict cysteine reactivity toward DMF and/or fumarate. It was based on the 

adoption of machine learning procedures to process data generated from the analysis of 

protein structure represented as residue interaction network (RIN; Figure 1).[23-30]  

A growing number of cysteine sites that are sensitive to DMF-related compounds 

have been verified using experimental proteomic methods over the past few years, and 

computational analyses have been carried out in order to fully take advantage of these 

findings. A dataset of DMF-sensitive cysteine sites (DMF-DS) was prepared using the 

findings reported by Blewett et al.[13] A large set of DMF-sensitive sites have been 

discovered in primary human T cell proteins using the isotopic tandem orthogonal 

proteolysis-activity-based protein profiling (isoTOP-ABPP) method. An isoTOP-ABPP ratio 

of at least 3 was adopted as the cut-off in this work to ensure that we include a valuable 

number of sites and exclude those endowed with low reactivity toward DMF. All of the 

collected proteins and sites were further assessed for eligibility, which was defined by the 

following criteria: 1) proteins with an established 3D structure; 2) sequence identity of at 

least 80%, as reported by The Protein Modal Portal (www.proteinmodelportal.org). The 

same criteria were also applied to a dataset of fumarate-sensitive cysteine sites found in 

eukaryotic proteins (FUM-DS), which was revised and updated from a previous version.[23] 

A total of 32 and 43 RIN were obtained from the 3D structure of the corresponding 32 and 

42 proteins (see Experimental section) included in the DMF-DS and FUM-DS, respectively 

(Table 1 and Table S1 and S2, Supporting Information). X-Ray diffraction was the method 

more often used to establish the 3D structure of these proteins. Human interleukin-1 

receptor-associated kinase 4 (PDB ID: 3MOP) was found in both datasets. A total of 588 

cysteine sites were found in these RIN (308 and 280 sites, in DMF-DS and FUM-DS, 

respectively). All these sites were divided into two subclasses according to their reactivity 

http://www.proteinmodelportal.org/
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toward DMF and/or fumarate: modifiable cysteine (MC; 35 and 52, for DMF-DS and FUM-

DS, respectively) and non-modifiable cysteine (NMC; 273 and 228, respectively) sites. 

Notably, NMC sites are either cysteine residues with no evidence of reactivity toward 

DMF/fumarate, or endowed with an isoTOP-ABPP ratio below the cut-off. Analysis of the 

collected RINs allows to identify 4,327 cysteine neighbors (2,221 and 2,106 neighbors, for 

the DMF-DS and FUM-DS, respectively). No significant difference was determined when 

the numbers of MC- and NMC-neighbors were compared between the two datasets (Table 

1). In contrast, significant differences were found when the number of MC- and NMC-

neighbors were compared within each dataset (P-value, 2.1 × 10-6 and 1.7 × 10-5, for the 

DMF-DS and FUM-DS, respectively; Wilcoxon rank sum test). Thereby, the existence of 

an association between cysteine reactivity toward DMF and/or fumarate and composition 

of the site neighborhood can be hypothesized. In order to assess this hypothesis, data on 

neighborhood composition were analyzed. First, clustering analysis algorithms were used 

to highlight the existence of specific patterns in these data. Unpredictably broad variety 

was found when DMF-DS and FUM-DS were examined (Figure S1 and S2, respectively, 

Supporting Information). Moreover, the lack of consistency in the results on the optimal 

number of clusters, which were computed using three different methods (Elbow, average 

silhouette and gap statistic; data not shown), mean that no obvious pattern of 

interactions/factors can be defined. Then, the predictive power of neighborhood 

composition was further assessed to evaluate whether it is an attribute by which MC and 

NMC sites can be classified. Preliminarily, the synthetic minority oversampling 

technique[31] was applied to attenuate the bias resulting from use of class-imbalanced 

datasets. The resulting datasets were then divided into a training (75% of the total sites) 

and a test subset (25%) by random selection, and analyzed using eight classification 

algorithms/models (Classification and Regression Tree, CART; Conditional Inference Tree, 
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CIT; k-Nearest Neighbors, KNN; Linear Discriminant Analysis, LDA; Neuronal Network, 

NNET; Partial Least Square, PLS; Random Forrest, RF; Support Vector Machine, 

SVM).[32] As shown in Figure 2, values higher than 0.8 were obtained for most 

algorithms/models when accuracy, sensitivity and specificity were computed. The highest 

and lowest performances were obtained using SVM and CIT, respectively. Moreover, a 

comparable performance was determined for SVM, RF and NNET. These results confirm 

previous findings on the reliability of these algorithms/models when employed in 

classification tasks,[32] including those in the field of cysteine site reactivity.[23] Moreover, 

they support the adoption of neighborhood composition as a potential predictor to estimate 

cysteine reactivity toward DMF-related drugs. In order to improve the clarity of the 

description, neighborhood composition of explicit examples, cysteine sites found in three 

proteins, were analyzed using SVM, LDA and CIT, which are endowed with high, 

intermediate and low performance, respectively. As shown in Figure 3, cysteine residues 

found in human probable DNA dCdU-editing enzyme (3VOW; reactivity toward DMF, 

panel A; Figure S3, Supporting Information),[13] human tyrosyl-tRNA synthetase, 

cytoplasmic (1NTG; reactivity toward fumarate, panel B; Figure S4, Supporting 

Information),[17] and human interleukin-1 receptor-associated kinase 4 (3MOP; reactivity 

toward DMF, panel C; reactivity toward fumarate, panel D; Figure S5, Supporting 

Information)[13,17] were classified precisely when SVM was employed. In contrast, some 

errors were detected when LDA and CIT were tested. 

The relatively small number of proteins and MC sites discovered in the experimental 

studies that fulfil the inclusion criteria limits the possibility to generalize the findings of this 

study. The likelihood of the conclusions is however supported by the evidence that well-

known features of cysteine residues in proteins (e.g., relative abundance) are met by those 

investigated in this study. Moreover, near equal results, in term of algorithm/model 
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performance, were obtained by analyzing two datasets of cysteines residues characterized 

by a minimal overlap and including sites gathered from different sources. The inclusion of 

additional examples from future studies would allow stronger conclusions to be drawn. As 

for other computational approaches, predictions obtained by analyzing cysteine neighbors 

needs to be interpreted with caution. Indeed, discrepancies could be determined by 

comparing theoretical and experimental findings. For instance, when cysteine-152 in 

human glyceraldehyde-3-phosfate dehydrogenase was assessed for its reactivity toward 

DMF, it was classified as a probable NMC site (data not shown). This prediction is 

consistent with the data reported by Blewett and colleagues.[13] However, this cysteine 

residue has also been reported as a relevant DMF-target site.[12] As for the inconsistencies 

resulting from the comparisons involving experimental data, even those regarding 

predicted vs measured cysteine reactivity could be attributed, at least in part, to the 

differences in the methods used to assess this feature. In fact, reactivity of a cysteine site 

toward DMF-related electrophiles has been demonstrated to depend on the experimental 

conditions.[13] Therefore, some sites endowed with low reactivity (e.g., an isoTOP-ABPP 

ratio below the cut-off) could even be modified when an higher cell exposure to the DMF-

related compounds, than those already studied, are adopted. Future studies, including 

those on specimens obtained from patients treated with DMF-based drug products, could 

provide intriguing new data on this point.  

In conclusion, the modification of a large proportion of cysteine sites in proteomes 

has led to electrophiles that are derived from DMF-based drug products exerting 

pleiotropic actions. The development and adoption of high-throughput and system-oriented 

methods and tools should be useful in interpreting the pharmacological profiles of these 

agents. As indicated by this proof-of-concept study, network theory, for protein structure 

analyses, can be combined with machine learning techniques to estimate the propensity of 
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a cysteine residue to be modified by DMF and/or fumarate. This thus provides a novel 

approach by which to find novel “acceptors” and “receptors” for DMF-based drug products.  

 

Experimental section 

The 3D structure of the included proteins were retrieved from the RCSB-PDB repository 

(http://www.rcsb.org/pdb/home/home.do) and analyzed to create the corresponding 2D 

representations as RIN. Briefly, according to the method proposed by Doncheva et al.,[30] 

each PDB file was visualized using UCSF Chimera (1.11.2) software 

(http://www.cgl.ucsf.edu/chimera/) and converted into the corresponding RIN using 

RINalyzer (http://www.rinalyzer.de), a Cytoscape-plugin for protein structure network 

assessment. Standard amino acids and natural ligands were considered nodes, while 

either the presence of a covalent bond between two residues, or a distance of at least 5 Å 

between two Cα were adopted as criteria to establish the node connectivity.[23] Data on the 

first neighbors of a cysteine site were collected using a two-step procedure. In the first 

step, each site was represented as a numerical vector. The vector elements were the 

counts of the 20 natural amino acids found in the neighborhood of that site. In the second 

step, the resulting numerical vectors were combined in a n × 20-matrix, were n is the total 

number of cysteine sites in a dataset. The matrices were analyzed using the k-means 

clustering algorithm to assess the associations between neighborhood composition and 

site reactivity. Moreover, as described by Kuhn and Johnson,[32] the predictive power of 

neighborhood composition was studied using eight classification models (Classification 

and Regression Tree, CART; Conditional Inference Tree, CIT; k-Nearest Neighbors, KNN; 

Linear Discriminant Analysis, LDA; Neuronal Network, NNET; Partial Least Square, PLS; 

Random Forrest, RF; Support Vector Machine, SVM). A ten-fold cross-validation 

http://www.rcsb.org/pdb/home/home.do
http://www.cgl.ucsf.edu/chimera/
http://www.rinalyzer.de/
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procedure was adopted, while the following metrics were computed to quantify model 

performance: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

 

where TP = true positive, TN = true negative, FP = false positive, and FN = false negative. 

Data were prepared, analyzed, and visualized using the R software (The R Project for 

Statistical Computing; https://www.r-project.org/).  
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Table 1. Overview of proteins and cysteine sites analyzed.  

 Data set 

 DMF FUM 

Proteins (n) 32 42 

3D structures established by:   

X-ray diffraction (n) 28 37 

Solution NMR (n) 3 5 

Electron microscopy (n) 1 - 

Electron crystallography (n) - 1 

RIN (n) 32 43 

Cysteine sites (n) 308 280 

MC:NMC (n)  35:273 52:228 

First neighbors (n)  

MC, median [range] 

2,221 

5 [2 – 12] 

2,106 

6 [3 – 12] 

NMC, median [range] 7 [3 – 14] 8 [2 – 13] 

RIN, residue interaction network; MC, modifiable cysteine; NMC, non-modifiable 

cysteine.  
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Figure Legends 

Figure 1. Identification of cysteine site first neighbors. The 3D structure (top left) of a 

DMF- and/or fumarate-sensitive protein was retrieved from the RCSB-PDB repository and 

analyzed to create the corresponding 2D representations as residue interaction networks 

(top left). The first neighbors of a cysteine site (bottom) were visualized, identified and 

counted for future analyses. Adenosine deaminase (PDB ID: 3IAR) has been shown as an 

explicit example. Cysteine residues are depicted as red spheres (3D structure) or circles 

(networks).  

 

Figure 2. Predictive power of neighborhood amino acid composition. Eight 

algorithms/models (Classification and Regression Tree, CART; Conditional Inference Tree, 

CIT; k-Nearest Neighbors, KNN; Linear Discriminant Analysis, LDA; Neuronal Network, 

NNET; Partial Least Square, PLS; Random Forrest, RF; Support Vector Machine, SVM) 

were tested to analyze data on neighborhood compositions of cysteine site included in the 

DMF-DS (A) and FUM-DS (B). Accuracy, sensitivity and specificity were computed to 

quantify algorithm/model performance.  

 

Figure 3. Predicted reactivity of explicit examples. Probabilities (P) of a cysteine site found 

in human probable DNA dCdU-editing enzyme (PDB ID: 3VOW; reactivity toward DMF, 

panel A), human tyrosyl-tRNA synthetase, cytoplasmic (1NTG; reactivity toward fumarate, 

panel B) and human interleukin-1 receptor-associated kinase 4 (3MOP; reactivity toward 

DMF, panel C; reactivity toward fumarate, panel D) to be a modifiable site was computed 

by analyzing data on their neighborhood (see Figure S3-S5) using three 

algorithms/models (Support Vector Machine, SVM; Linear Discriminant Analysis, LDA; 
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LDA or Conditional Inference Tree, CIT, CIT) trained on the corresponding sets of cysteine 

sites and compared to the measured reactivity (Class). 
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Figure 1. 
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Figure 2. 
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Figure 3. 
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