468 research outputs found

    Energy-efficient adaptive wireless network design

    Get PDF
    Energy efficiency is an important issue for mobile computers since they must rely on their batteries. We present an energy-efficient highly adaptive architecture of a network interface and novel data link layer protocol for wireless networks that provides quality of service (QoS) support for diverse traffic types. Due to the dynamic nature of wireless networks, adaptations are necessary to achieve energy efficiency and an acceptable quality of service. The paper provides a review of ideas and techniques relevant to the design of an energy efficient adaptive wireless networ

    The Recapture of Foreign Losses and Revenue Ruling 78-201

    Get PDF

    The Recapture of Foreign Losses and Revenue Ruling 78-201

    Get PDF

    Reconfigurable Mobile Multimedia Systems

    Get PDF
    This paper discusses reconfigurability issues in lowpower hand-held multimedia systems, with particular emphasis on energy conservation. We claim that a radical new approach has to be taken in order to fulfill the requirements - in terms of processing power and energy consumption - of future mobile applications. A reconfigurable systems-architecture in combination with a QoS driven operating system is introduced that can deal with the inherent dynamics of a mobile system. We present the preliminary results of studies we have done on reconfiguration in hand-held mobile computers: by having reconfigurable media streams, by using reconfigurable processing modules and by migrating functions

    Generating nested quadrature rules with positive weights based on arbitrary sample sets

    Get PDF
    For the purpose of uncertainty propagation a new quadrature rule technique is proposed that has positive weights, has high degree, and is constructed using onl

    Bayesian model calibration with interpolating polynomials based on adaptively weighted Leja nodes

    Get PDF
    An efficient algorithm is proposed for Bayesian model calibration, which is commonly used to estimate the model parameters of non-linear, computationally expens

    Bayesian model calibration with interpolating polynomials based on adaptively weighted Leja nodes

    Get PDF
    An efficient algorithm is proposed for Bayesian model calibration, which is commonly used to estimate the model parameters of non-linear, computationally expensive models using measurement data. The approach is based on Bayesian statistics: using a prior distribution and a likelihood, the posterior distribution is obtained through application of Bayes' law. Our novel algorithm to accurately determine this posterior requires significantly fewer discrete model evaluations than traditional Monte Carlo methods. The key idea is to replace the expensive model by an interpolating surrogate model and to construct the interpolating nodal set maximizing the accuracy of the posterior. To determine such a nodal set an extension to weighted Leja nodes is introduced, based on a new weighting function. We prove that the convergence of the posterior has the same rate as the convergence of the model. If the convergence of the posterior is measured in the Kullback-Leibler divergence, the rate doubles. The algorithm and its theoretical properties are verified in three different test cases: analytical cases that confirm the correctness of the theoretical findings, Burgers' equation to show its applicability in implicit problems, and finally the calibration of the closure parameters of a turbulence model to show the effectiveness for computationally expensive problems

    Fatigue design load calculations of the offshore NREL 5MW benchmark turbine using quadrature rule techniques

    Get PDF
    A novel approach is proposed to reduce, compared to the conventional binning approach, the large number of aeroelastic code evaluations that are necessary to obtain equivalent loads acting on wind turbines. These loads describe the effect of long-term environmental variability on the fatigue loads of a horizontal-axis wind turbine. In particular Design Load Case 1.2, as standardized by IEC, is considered. The approach is based on numerical integration techniques and, more specifically, quadrature rules. The quadrature rule used in this work is a recently proposed "implicit" quadrature rule, which has the main advantage that it can be constructed directly using measurements of the environment. It is demonstrated that the proposed approach yields accurate estimations of the equivalent loads using a significantly reduced number of aeroelastic model evaluations (compared to binning). Moreover the error introduced by the seeds (introduced by averaging over random wind fields and sea states) is incorporated in the quadrature framework, yielding an even further reduction in the number of aeroelastic code evaluations. The reduction in computational time is demonstrated by assessing the fatigue loads on the NREL 5MW reference offshore wind turbine in conjunction with measurement data obtained at the North Sea, both for a simplified and a full load case
    • …
    corecore