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Abstract

An efficient algorithm is proposed for Bayesian model calibration, which is commonly used to estimate
the model parameters of non-linear, computationally expensive models using measurement data. The
approach is based on Bayesian statistics: using a prior distribution and a likelihood, the posterior distri-
bution is obtained through application of Bayes’ law. Our novel algorithm to accurately determine this
posterior requires significantly fewer discrete model evaluations than traditional Monte Carlo methods.
The key idea is to replace the expensive model by an interpolating surrogate model and to construct
the interpolating nodal set maximizing the accuracy of the posterior. To determine such a nodal set an
extension to weighted Leja nodes is introduced, based on a new weighting function. We prove that the
convergence of the posterior has the same rate as the convergence of the model. If the convergence of the
posterior is measured in the Kullback–Leibler divergence, the rate doubles. The algorithm and its theor-
etical properties are verified in three different test cases: analytical cases that confirm the correctness of
the theoretical findings, Burgers’ equation to show its applicability in implicit problems, and finally the
calibration of the closure parameters of a turbulence model to show the effectiveness for computationally
expensive problems.

Keywords: Bayesian model calibration, Interpolation, Leja nodes, Surrogate modeling

1 Introduction

Estimating model parameters from measurements is a problem of frequent occurrence in many fields of
engineering and many different approaches exist to solve this problem. We consider non-linear calibration
problems (or inverse problems) where a forward evaluation of the model is computationally expensive. The
approach we follow is of a stochastic nature: the unknown parameters are modeled using probability distri-
butions and information about these parameters is inferred using Bayesian statistics. This approach is often
called Bayesian model calibration.

Bayesian model calibration [19, 31, 32] is a systematic way to calibrate the parameters of a computational
model. By means of a statistical model to describe the relation between the model and the data, the
calibrated parameters are obtained in the form of a random variable (called the posterior) by means of
Bayes’ law. These random variables can then be used to assess the uncertainty in the model and to make
future predictions. This procedure is well-known in the field of Bayesian statistics, where the goal is to
infer unmeasured quantities from data. The calibration approach has already been applied many times, for
example to calibrate the closure parameters of turbulence models [7, 11]. A similar example is considered in
this work.

Possibly the largest drawback of Bayesian model calibration is the expensive sampling procedure that is
necessary. Because the posterior depends to a large extent on the model, which is only known implicitly (e.g.
a computer code numerically solving a partial differential equation), determining a sample from the posterior
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is mostly done using Markov chain Monte Carlo (MCMC) methods [14, 25], requiring many expensive model
evaluations. Improvements have been made to accelerate these MCMC methods, e.g. the DREAM algorithm
[37] or adaptive sampling [40]. Replacing the sampling procedure itself is also possible, e.g. methods based on
sparse grids [6, 22] or Approximate Bayesian Computation [2, 9, 20]. However, this encompasses stringent
assumptions on the statistical model or still requires many model runs as the shape of the posterior is
unknown.

A different approach is followed in the current article. In essence we are following the approach of
Marzouk et al. [24], which has been used several times in literature [1, 4, 23, 27, 30, 41, 42]. The key
idea in our procedure is to replace the model in the calibration step with a surrogate (or response surface)
that approximates the computationally expensive model. MCMC can then be used to sample the resulting
posterior without a large computational overhead.

It is customary to construct the surrogate with respect to the prior (or only its support). If the likelihood
differs a lot from the prior, this is not used. It is even possible that no convergence is observed at all [21].

In this article we create a surrogate model through interpolation (instead of the commonly applied
polynomial chaos expansion), built using Leja nodes. Probability density functions can be incorporated
using weighted Leja nodes [18, 26]. We extend weighted Leja nodes to adaptively refine the interpolating
polynomial by using obtained posterior information. As extensive theory about interpolation polynomials
exists (e.g. [16]), we can prove convergence of the estimated posterior with mild assumptions on the likelihood.
This extends previous work [4, 24], in which the likelihood is assumed to be Gaussian. The end result is
an interpolating polynomial that can be used in conjunction with the likelihood and the prior to obtain
statistics on the posterior.

To demonstrate the applicability of our methodology, we will employ three different classes of test prob-
lems. The first class consist of functions that are known explicitly and can be evaluated fast and accurate.
We will use these to show the effectiveness of our nodal set compared to commonly used methods. The
second class consists of problems that are defined implicitly, but do not require significant computational
power to solve. For this, we employ the one-dimensional Burgers’ equation. In this case, it is possible to
compare the estimated posterior with a posterior determined using Monte Carlo methods. The last class
consists of problems of such large complexity that a quantitative comparison with a true posterior is not
possible anymore. As example we consider the calibration of closure coefficients of the Spalart–Allmaras
turbulence model.

This paper is set up as follows. First, we discuss Bayesian model calibration and introduce the adaptively
weighted Leja nodes. In Section 3 the theoretical properties of the algorithm are studied and its convergence
is assessed. Section 4 contains numerical tests that show evidence of the theoretical findings and in Section 5
conclusions are drawn.

2 Bayesian model calibration with a surrogate

The focus is on the stochastic calibration of computationally expensive (possibly implicitly defined) models.
We denote this model by u : Ω→ R, with Ω ⊂ Rd (d = 1, 2, . . . ). In this work we will not focus on the specific
construction of this model, but for example u arises as a solution of a set of partial differential equations.
Without loss of generality, we assume that u is a scalar quantity. u depends on d parameters, which we will
denote as vector ϑ = (ϑ1, . . . , ϑd)

T ∈ Ω. One can think of ϑ as parameters inherent to the model, such as
fitting parameters or other closure parameters.

The goal of Bayesian model calibration is to infer knowledge about the model parameters, given meas-
urement data of the process modeled by u. To this end, we assume that a vector of measurements
z = (z1, . . . , zn)

T
is given, with zk ∈ R. This data can be provided by various means, for example by

measurements or by the results of a high-fidelity model. Using parameters ϑ, a statistical model is for-
mulated describing a relation between the model u(ϑ) and the data z by means of random variables that
model among others discrepancy, error, and uncertainty. For example, these random variables account for
measurement errors and numerical tolerances. Using Bayesian statistics [12], the posterior of the parameters
is formulated by means of a probability density function (PDF).

Throughout this article we let p(ϑ) be the prior, a PDF containing all prior information of ϑ obtained
through physical constraints, assumptions, or previous experiments. The likelihood p(z | ϑ) is obtained
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through the statistical relation between the model u and the data z. Possibly the most straightforward
example is zk = u(ϑ) + εk, where ε = (ε1, . . . , εn)

T
is assumed to be multivariate Gaussian distributed with

mean 0 and covariance matrix Σ. This yields the following likelihood:

p(z | ϑ) ∝ exp

[
−1

2
dTΣ−1d

]
,with d a vector such that dk = zk − u(ϑ). (1)

d is the so-called misfit. Bayes’ law is applied to obtain the posterior p(ϑ | z), i.e.

p(ϑ | z) ∝ p(z | ϑ)p(ϑ). (2)

The posterior PDF can be used to assess information about the parameters of the model, e.g. by determining
the expectation or MAP estimate (i.e. the maximum of the posterior). The uncertainty of these parameters
can be quantified by determining the moments of the posterior PDF.

Note that the posterior depends on the likelihood, which requires an expensive evaluation of the model
(see (1)). Therefore sampling the posterior through the application of MCMC methods [14, 25] is typically
intractable for such models.

Vector-valued models u can be incorporated in this framework straightforwardly, although the likelihood
requires minor modifications. Typically an observation operator is introduced that restricts u to the locations
where measurement data is available. We will discuss an example of this in Section 4.3.

Throughout this article we assume the likelihood is a continuously differentiable, Lipschitz continuous
function of the misfit d or (more general) of the model u. This is true for the multivariate Gaussian likelihood
and (more general) for any likelihood which has additive errors (see [19] for more examples in the context of
Bayesian model calibration). There are no further constraints on the structure of the likelihood and the prior
in this work, but we do not incorporate the calibration of hyperparameters, i.e. parameters introduced solely
in the statistical model (an example would be the calibration of the standard deviation of ε). Moreover, we
assume the prior is not improper, although in practice our methods can be applied in such a setting.

The outline of the proposed calibration procedure is as follows. Let uN be an interpolating surrogate
of u using N distinct nodes and model evaluations. Using uN , an estimated posterior can be determined,
which is used to obtain the (N + 1)th node. The steps are repeated until convergence is observed. Finally
MCMC can be applied to the resulting posterior, because the computationally expensive model is replaced
with an explicitly known surrogate.

First, we briefly introduce the interpolation polynomial for sake of completeness. Then the nodal set we
will use, the Leja nodes, will be introduced.

2.1 Interpolation methods

In general an interpolating polynomial can be defined as follows. Let u : Ω→ R with Ω ⊂ Rd be a continuous
function. Let D be given and define the set P(N, d) (with N =

(
d+D
D

)
) to be all d-variate polynomials of

degree D and lower. Using a nodal set XN+1 = {x0, . . . ,xN} and evaluations of u at each node (i.e. u(xk)
for k = 0, . . . , N) the goal is to determine a polynomial p ∈ P(N, d) such that

p(xk) = u(xk), for k = 0, . . . , N. (3)

This construction can be extended to any N = 1, 2, 3, . . . , provided that the monomials of the space P(N, d)
form a well-ordered set. Throughout this article, we use a graded reverse lexicographic order.

2.1.1 Univariate interpolation

In the case of d = 1, it is well-known that if all nodes are distinct the interpolation polynomial can be stated
explicitly using Lagrange interpolating polynomials, i.e.

uN (x) = (LNu)(x) :=

N∑
k=0

`Nk (x)u(xk), with `Nk (x) =

N∏
j=0
j 6=k

x− xj
xk − xj

. (4)
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Here LN is a linear operator that yields a polynomial of degree N , which we will denote as uN . By
construction, the Lagrange basis polynomials `Nk have the property `Nk (xj) = δk,j (i.e. `Nk (xj) = 1 if j = k
and `Nk (xj) = 0 otherwise). Therefore uN (xk) = u(xk) for all k, such that it is indeed an interpolating
polynomial.

The barycentric notation [3] can be used to numerically evaluate the interpolation polynomial given a
nodal set (which is unconditionally stable [15]).

2.1.2 Multivariate interpolation

The Lagrange interpolating polynomials can be formulated in a multivariate setting, by defining them in
terms of the determinant of a Vandermonde-matrix:

uN (x) = (LNu)(x) :=

N∑
k=0

`Nk (x)u(xk), with `Nk (x) =
detV (x0, . . . ,xk−1,x,xk+1, . . . ,xN )

detV (x0, . . . ,xk−1,xk,xk+1, . . . ,xN )
, (5)

where V (x0, . . . ,xN ) is the (N+1)×(N+1) Vandermonde-matrix with respect to the nodal set {x0, . . . ,xN},
i.e.

Vi,j(x0, . . . ,xN ) = xαi
j . (6)

Here, αk ∈ Nd are defined such that for α = (α1, . . . , αd) and x = (x1, . . . , xd), we have xα = xα1
1 · · ·xαd

d . As
stated before, αk are sorted using the graded reverse lexicographic order (i.e. first compare the total degree,
then apply reverse lexicographic order to equal monomials). This implies that ‖αk‖1 is a sorted sequence in
k. Multivariate interpolation by means of this Vandermonde-matrix is only well-defined if V is non-singular
(or equivalently, if XN+1 is a poised interpolation sequence with respect to P(N, d)). All nodal sequences
constructed in this article are poised.

Evaluating a multivariate interpolating polynomial numerically can be done in various ways. A commonly
used approach is to rewrite (6) as

Vi,j(x0, . . . ,xN ) = ϕj(xi), (7)

where ϕj(x) are orthogonal basis polynomials (e.g. Chebyshev or Legendre polynomials). The polynomials
ϕj form a linear combination of monomials, so mathematically speaking both approaches yield the same
solution.

The nodal sets used in this article use the determinant of the Vandermonde-matrix. Therefore we use
the QR factorization [13] of the Vandermonde-matrix to determine the interpolating polynomial and reuse
the QR factorization to determine the nodal set (see Section 2.2 for details).

2.2 Weighted Leja nodes

For the purpose of Bayesian model calibration, we desire an algorithm to determine a nodal set XN for any
N having the following properties:

1. Accuracy: the nodal sets should yield an accurate posterior. We are mainly interested in estimating
the posterior, i.e. it is not strictly necessary to have an accurate surrogate model on the full domain.

2. Nested: we require Xi ⊂ Xj for i < j, such that the obtained interpolant can be refined by reusing
existing model evaluations.

3. Weighting: the goal is to determine the next node based on the posterior obtained so far. The
algorithm of the nodal set should allow for this.

In this work we consider weighted Leja nodes, which form a sequence of nodes. The sequence is therefore by
definition nested. First, we will define the univariate Leja nodes and generalize those to multivariate Leja
nodes. Examples of univariate sequences are depicted in Figure 1.

The definition of weighted Leja nodes is by induction. Let ρ : R → R+ be a bounded PDF and let
{x0, . . . , xN} be a sequences of Leja nodes. Then the next node is defined by maximizing the numerator of
`N+1
N+1(x), i.e.

xN+1 := arg max
x∈R

ρ(x)|x− x0||x− x1| · · · |x− xN |. (8)

4



−1 −0.5 0 0.5 1

X

N

(a) Uniform (“unweighted”)

−1 −0.5 0 0.5 1

X

N

(b) Beta, α = β = 4

−4 −2 0 2 4

X

N

(c) Standard normal

Figure 1: Univariate Leja sequences for various number of nodes and various well-known distributions.

If the maximum is not defined uniquely, any value of x maximizing the right hand side can be used (we pick
the minimal one). The initial node x0 is defined as any value maximizing ρ(x). Unweighted Leja nodes are
defined with the uniform weighting function on [−1, 1]. We want to emphasize that multiplying the weighting
function with a constant yields an identical sequence. This property is very useful for our purposes, as it
allows us to neglect the constant of proportionality (often called the evidence) in Bayes’ law.

Notice that the definition can be rewritten as follows:

xN+1 = arg max
x∈R,ρ(x)>0

log ρ(x) +

N∑
k=0

log |x− xk|. (9)

Therefore for large N , the product |x − x0| · · · |x − xN | will dominate the maximization, i.e. the effect of
the weighting function ρ decreases for increasing N . Hence weighted Leja nodes become (approximately)
unweighted Leja nodes for large N .

The definition of univariate Leja nodes can be generalized to a multidimensional setting in a similar way
as we did in Section 2.1.2 with interpolation. To this end, let ρ : Rd → R+ be a multivariate PDF. Let
x0 ∈ Rd be an initial node with ρ(x0) > 0. Then the next node is defined as follows:

xN+1 := arg max
x∈Rd

ρ(x) |detV (x0, . . . ,xN ,x)| . (10)

Here, V is the Vandermonde-matrix defined in Section 2.1.2. The absolute value of the determinant of V is
independent of the set of polynomials that is used to construct V , so the definition is mathematically the
same for both monomials and orthogonal polynomials.

Determining multivariate Leja nodes is less trivial compared to univariate nodes and is typically done
by randomly (or quasi-randomly) sampling the space of interest and selecting the node that results in the
highest determinant. It is important to be able to use a large number of samples, so it must be possible to
calculate the determinant fast. We suggest to calculate the determinant by an extended QR factorization of
the (N+2)×(N+1)-matrix V (x0, . . . ,xN ) and to add the column containing x by applying a rank-1 update.
If a QR factorization has been calculated to determine the interpolating polynomial (see Section 2.1.2), it
can be reused here. As a rank-1 update is an efficient procedure, a large number of samples can be used
and therefore we assume that the approximation error is negligible in this case. Examples of Leja sequences
defined by (10) can be found in Figure 2.

2.3 Calibration using Leja nodes

In this section we will derive a weighting function to be used in the interpolation procedure discussed in the
previous section, with the goal to approximate the posterior. Theoretical details are provided in Section 3.

If the posterior is known explicitly and samples can be readily drawn from it, it is possible to determine
weighted Leja nodes with weighting function ρ(ϑ) = p(ϑ | z). These nodes provide an interpolant that is
very suitable for evaluating integrals with respect to the posterior (this is commonly known as Bayesian
prediction). However, the posterior is generally not explicitly available because it depends on the model u,
which in itself is not known explicitly and can only be determined on (finitely many) nodes. Therefore the
need arises for an interpolation sequence that approximates u such that the posterior determined with this
approximation is accurate.
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X
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(a) Uniform (“unweighted”)

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5
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X
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(b) Multivariate Beta(4,4)

−2 −1 0 1 2
−2

−1

0

1

2

X1

X
2

(c) Multivariate normal

Figure 2: Multivariate Leja sequences of 25 nodes using various well-known distributions.

To this end, let pN (ϑ | z) be the posterior determined using uN (ϑ), i.e. the interpolant of u using N + 1
nodes in ϑ. We will use the definition of the weighted Leja nodes from (10) to determine the next node. The
natural idea is to construct pN+1(ϑ | z) (i.e. a new approximation of the posterior) by determining a new
weighted Leja node using pN (ϑ | z) (i.e. the existing approximation of the posterior). Such a sequence is
numerically unstable, because it solely places nodes in regions where the approximate posterior is high and
therefore yields spurious oscillations in other regions in the domain.

The key idea is to balance between the accuracy of the interpolant and the accuracy of the posterior.
There are various methods to do this, but we choose to temper the effect of the (possibly inaccurate)
approximate posterior by adding a constant value ζ to it. The higher this ζ, the more the posterior tends
to a uniform distribution. The weighted Leja nodes therefore tend to unweighted Leja nodes, such that the
interpolatory sequence becomes stable.

To introduce this construction formally, we assume that a function P : R → R+ (we assume 0 ∈ R+)
exists such that

p(z | ϑ) = P (u(ϑ)), (11)

where P typically is a PDF which follows from the statistical model. In the example discussed in (1) P is a
Gaussian PDF, i.e.

P : R→ R+, with P (u) ∝ exp

[
−1

2
dTΣ−1d

]
and dk = zk − u. (12)

We assume that the function P is globally Lipschitz continuous and continuously differentiable. Many
statistical models used in a statistical setting yield Lipschitz continuous P , because a bounded continuously
differentiable function P (u) with P ′(u)→ 0 for u→ ±∞ is Lipschitz continuous. The domain of definition
of P is the image of the model u(ϑ), so functions P that are only Lipschitz continuous in the set described
by the image of u(ϑ) also fit in this framework (for example the Gamma distribution on the positive real
axis).

It follows that for a fixed ϑ, we have by application of the mean value theorem:

|pN (ϑ | z)− p(ϑ | z)| = |P (uN (ϑ))− P (u(ϑ))|p(ϑ)

= |P ′(ξ)||uN (ϑ)− u(ϑ)|p(ϑ),
(13)

for some ξ ∈ [uN (ϑ), u(ϑ)]. Here the derivative P ′ is with respect to u, i.e.

P ′(u(ϑ)) =
∂P

∂u
(u(ϑ)). (14)

We want to emphasize that for the evaluation of P ′(uN (ϑ)) no costly evaluation of the full model u is
necessary, since P ′ is independent of u. In the example from (1), P ′ becomes the following:

P ′ : R→ R, with P ′(u) ∝ −1

2

(
1TΣ−1d + dTΣ−11

)
exp

[
−1

2
dTΣ−1d

]
, with dk = zk − u, (15)
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−2 −1 0 1 2

0

0.5

1

ϑ

(a) ζ = 0

−2 −1 0 1 2

0

0.5

1

ϑ

(b) ζ = 1/100

−2 −1 0 1 2

0

0.5

1

ϑ

(c) ζ = 100

Figure 3: Interpolation of the sinc function using 5 weighted Leja nodes with respect to the posterior and a
tempering parameter ζ. The model and (unscaled) posterior are depicted in red and black respectively (the
“true” value is dashed).

with 1 = (1, 1, . . . , 1)
T ∈ Rn. Taking the ∞-norm in ϑ on both sides of (13) yields:

‖pN (ϑ | z)− p(ϑ | z)‖∞ = ‖P ′(ξ)(uN (ϑ)− u(ϑ))p(ϑ)‖∞
≤ ‖
[
P ′(uN (ϑ)) + ζ

]
|uN (ϑ)− u(ϑ)|p(ϑ)‖∞,

(16)

with ζ ≥ |P ′(ξ) − P ′(uN (ϑ))|. The constant ζ is a measure for how far the likelihood of the interpolant is
from the likelihood of the true model. The idea is to construct an accurate interpolant where P ′(uN (ϑ)) + ζ
is large, while at the same time ensuring stability of the interpolant. Concluding, we propose to construct
uN using weighted Leja nodes which are determined using the following weighting function:

qN (ϑ | z) = |P ′(uN (ϑ))|p(ϑ) + ζp(ϑ), where ζ > 0 is a free parameter, (17)

i.e. if ϑ0, . . . ,ϑN are the first N + 1 interpolation nodes, ϑN+1 is determined as follows:

ϑN+1 = arg max
ϑ

qN (ϑ | z) |detV (ϑ0, . . . ,ϑN ,ϑ)| . (18)

Examples of posteriors obtained with this weighting function compared with the exact posterior are
depicted in Figure 3. Here the univariate function u(ϑ) = sinc(ϑ) = sin(ϑ)/ϑ is “calibrated” using the
Gaussian likelihood with σ = 1/10 and one data point at z1 = 1. If ζ = 0 (no tempering) the interpolant
is indeed accurate with respect to the posterior, but yields an incorrect approximate posterior because the
interpolant crosses the value of the data incorrectly around ϑ = ±1.5. For ζ = 100, it can be guaranteed that
ζ ≥ |P ′(ξ)−P ′(uN (ϑ))|, but such a value yields approximately unweighted Leja nodes. However, even for a
very small non-negative value of ζ, a significant improvement over ζ = 0 is noticed. This does demonstrate
the importance of tempering on the effect of the approximate posterior.

We will discuss the parameter ζ in more detail in Section 3.5. Combining this weighting function with (10)
(so ρ = qN ) yields a nodal set, which can be used in conjunction with (5) to create the interpolant. Finally,
using this interpolant a new qN can be determined and the process can be repeated. A schematic overview
of this procedure is depicted in Figure 4. Convergence can be assessed in various ways, for example using the
∞-norm or the Kullback–Leibler divergence. We will use the ∞-norm, as determining the Kullback–Leibler
norm in higher-dimensional spaces is numerically challenging.

3 Convergence analysis

In this section the convergence of the estimated posterior to the true posterior is studied. First, the con-
vergence properties of interpolation methods are reviewed as these form the basis of our adaptive approach.
Based on this, convergence of the estimated posterior to the true posterior in both the ∞-norm and the
Kullback–Leibler divergence can be proved.
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Choose p(ϑ), p(z | ϑ), ζ

Calculate ϑ0 = arg maxϑ p(ϑ)

Construct uN , pN (z | ϑ)

ϑN+1 = arg maxϑ p(ϑ) (ζ + P ′(uN (ϑ)))

Convergence?Finish
Yes?

No?

N ← N + 1

Figure 4: Schematic overview of the algorithm proposed in this article.

3.1 Lebesgue constant

The accuracy of interpolation methods can be assessed in two ways: using point wise error bounds which
are typically based on Taylor expansions and global error bounds which are typically based on the Lebesgue
inequality. We will use the latter type.

Let P(K) = P(K, 1), i.e. all univariate polynomials of degree less or equal thanK. We assume u ∈ C[−1, 1]
(i.e. a continuous function defined in [−1, 1]) and ‖u‖∞ := supx∈[−1,1] |u(x)| if not stated otherwise. It is
well-known that C[−1, 1] equipped with the norm ‖ · ‖∞ forms a Banach space.

Let XN = {x0, . . . , xN} ⊂ [−1, 1] be a set of interpolation nodes and let LN : C[−1, 1] → P(N) be the
Lagrange interpolation operator (see (4)) that determines the interpolating polynomial given the nodal set
XN . Then for any polynomial ϕN of degree N we have

‖LNu− u‖∞ ≤ (1 + ‖LN‖∞)‖ϕN − u‖∞ (19)

where ΛN := ‖LN‖∞ = supx∈[−1,1]

∑N
k=0 |`Nk (x)| is the operator norm of LN induced by the norm ‖ · ‖∞

discussed above. ΛN is called the Lebesgue constant [16]. The inequality holds for any polynomial ϕN , so
an immediate result is the Lebesgue inequality:

‖LNu− u‖∞ ≤ (1 + ΛN ) inf
ϕN∈P(N)

‖ϕN − u‖∞. (20)

In the procedure used for calibration, nodes are determined using a weighting function ρ. To assess the
accuracy of nodes that use weighting, we introduce the weighted ∞-norm as follows:

‖u‖ρ := ‖ρ u‖∞. (21)

Here, we assume that ρ(x) : Ω→ R+ is a bounded PDF1, such that that C(Ω) equipped with the norm ‖ · ‖ρ
forms a Banach space. The support of u (say Ω) is allowed to be unbounded, in contrast to the unweighted
case. The unweighted case is a special case of the weighted case.

Using this norm we can derive a similar estimate as (20) by introducing [18]:

ΛρN := ‖LN‖ρ = sup
x∈R

N∑
k=0

ρ(x)|`Nk (x)|
ρ(xk)

. (22)

Here, ΛρN := ‖LN‖ρ is the weighted Lebesgue constant, i.e. the norm of the operator u → ρLN (u/ρ). We
call the result the weighted Lebesgue inequality:

‖LNu− u‖ρ ≤ (1 + ΛρN ) inf
ϕN∈P(N)

‖ϕN − u‖ρ. (23)

1The boundedness is not strictly necessary for C(Ω) to be a Banach space, but for the cases discussed in this article
boundedness suits.
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Figure 5: The Lebesgue constant of a univariate unweighted Leja sequence is bounded by N . This plot has
been determined numerically.

3.2 Accuracy of nodal sets

It is both an advantage and a disadvantage that the Lebesgue constant solely depends on the nodal set: we
do not have to take the model into account to estimate the accuracy, but the resulting estimate does not
take any properties of the model into account. The algorithm discussed in Section 2.3 does use the model
and therefore cannot be fit directly in the framework set out in the previous section.

Many nodal sets exist with a logarithmically growing Lebesgue constant, which is asymptotically the
optimal growth. For example, Chebyshev nodes (i.e. the nodes from the Clenshaw–Curtis quadrature rule)
have ΛN = O(logN) [16]. Moreover, we already stated that the Chebyshev nodes are nested such that the
nodes for N = 2l + 1 (for integer l) are contained in the nodes for N = 2l+1 + 1. However, the Chebyshev
nodes are only defined in an unweighted setting. Another well-known example are equidistant nodes, which
have an exponentially growing Lebesgue constant. This can be observed by interpolating Runge’s function.

Although it is known that the Lebesgue constant of both weighted and unweighted Leja sequences grows
sub-exponentially [18, 35, 36], the exact growth (or a strict upper bound) is not known. We have therefore
numerically determined the Lebesgue constant for N up to 30 000 for several distributions and observed
ΛN ≤ N , see Figure 5 for the case of unweighted univariate Leja nodes. For weighted Leja nodes with
respect to the beta distribution and the Gaussian distribution the plot is similar.

Moreover, except for some specific cases (such as the unit disk [5]), not much is known about the Lebesgue
constant in the multivariate case. Unfortunately, as far as the authors know, it is difficult to determine
multivariate Leja nodes accurate enough to create a similar plot as Figure 5. For small number of nodes
(N . 100) and low dimensionality (d . 5) the Lebesgue constants do grow similarly, but this number is too
small to draw conclusions about general asymptotic behavior. However, the numerically determined growth
of the Lebesgue constant is sufficient for the purposes in the current article.

3.3 Jackson’s inequality

The interpolation error from (20) contains two main parts: ΛN and infϕ∈P(N) ‖u − ϕ‖∞. In the previous
section we discussed some properties of ΛN , the first part of this expression. The latter part can be estimated
using Jackson’s inequality [17], for which we need the notion of the modulus of continuity.

Definition 1. Let u ∈ C[−1, 1]. Then the modulus of continuity of u, denoted by ωu : [0,∞)→ [0,∞) is a
function such that

|u(x)− u(y)| ≤ ωu(|x− y|). (24)

Jackson’s inequality relates the approximation error with the modulus of continuity of the function u.
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Theorem 2 (Jackson [17], 1982). Let u ∈ C[−1, 1] and N > 0 be given. Then there exists a ϕ ∈ P(N) such
that

‖u− ϕ‖∞ ≤ Cωu(N−1). (25)

Here, C is independent of N and u.

Proof. See [29].

Using Jackson’s inequality, we can prove a bound on infϕ∈P(N) ‖u − ϕ‖∞ and prove convergence of the
interpolant, e.g. for Lipschitz continuous functions u, which have ωu(δ) = Cδ, we obtain:

‖uN − u‖∞ ≤ (1 + ΛN ) inf
ϕ∈P(N)

‖u− ϕ‖∞ ≤ C
1 + ΛN
N

. (26)

So if (1+ΛN )/N → 0 (see Figure 5), convergence is proved. There exist many variants of Jackson’s equality,
e.g. for higher dimensional spaces and functions that have high-order derivatives. If a function is analytic,
exponential convergence can be proved. The interested reader is referred to the accessible introduction in
the book of Watson [38] and the references therein for more information.

3.4 Convergence of the posterior: the general case

In this section we study convergence of the estimated posterior to the true posterior in the ∞-norm, given
convergence of the interpolant. Convergence of the interpolant can be assessed using both the Lebesgue
constant and Jackson’s inequality. As discussed previously, let p(ϑ), p(z | ϑ), and p(ϑ | z) be the prior,
likelihood, and posterior respectively. Let u be the model, such that u(ϑ) is a model evaluation using a fixed
set of parameters ϑ. We assume an interpolant uN is given such that uN converges to u for increasing N
and let pN (z | ϑ) and pN (ϑ | z) be the likelihood and the posterior constructed with this interpolant, i.e.
pN (z | ϑ) = P (uN (ϑ)). The main result is that if the interpolant converges to the model (which can be
proved using the techniques outlined in the previous section), the estimated posterior converges to the true
posterior. We do not need differentiability in this general case.

Theorem 3. Let u : Ω → R be a continuous function and let uN be an interpolation of u with N nodes.
Suppose

‖uN − u‖p(ϑ) ≤ CN−α (27)

for some positive constants C and α (i.e. uN converges to u with rate α). Assume the likelihood (i.e. the
function P ) is Lipschitz continuous.

Then
‖pN (ϑ | z)− p(ϑ | z)‖∞ ≤ KN−α, (28)

where K is a positive constant.

Proof. Recall the definition of P from (11): p(z | ϑ) = P (u(ϑ)). Let Q be the Lipschitz constant of P .
Convergence readily follows:

‖pN (ϑ | z)− p(ϑ | z)‖∞ = ‖(pN (z | ϑ)− p(z | ϑ))p(ϑ)‖∞
= ‖[P (uN (ϑ))− P (u(ϑ))]p(ϑ)‖∞
≤ Q‖(uN (ϑ)− u(ϑ))p(ϑ)‖∞
= Q‖uN (ϑ)− u(ϑ)‖p(ϑ)

≤ QCN−α,

(29)

i.e. if uN converges to u in the weighted p(ϑ)-norm, the estimated posterior converges to the true posterior
with at least the same rate of convergence. This concludes the proof of Theorem 3, extending previous work
[4, 23] from Gaussian likelihoods to general likelihoods.
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3.5 Adaptivity in the weighting function

Recall the weighting function introduced in Section 2.3:

qN (ϑ | z) = |P ′(uN (ϑ))|p(ϑ) + ζp(ϑ), with ζ > 0. (30)

This weighting function changes throughout the calibration procedure, because it depends on uN (ϑ).
We have used this function to construct an algorithm that creates an interpolating surrogate using the

posterior (see Figure 4). It holds that ζ ≈ |P ′(ξ)−P ′(uN (ϑ))| yields the fastest convergence, but in practice
this value is rarely known exactly. Fortunately, the surrogate will converge for all positive ζ, which can be
seen as follows. qN and p are both positive functions, hence we can rewrite the definition of Leja nodes as
follows:

ϑN+1 = arg max
ϑ

qN (ϑ) |detV (ϑ0, . . . ,ϑN ,ϑ)| =

arg max
ϑ

(
log(|P ′(uN (ϑ))|+ ζ) + log p(ϑ) + log |detV (ϑ0, . . . ,ϑN ,ϑ)|

)
. (31)

We have that log(|P ′(uN (ϑ))| + ζ) is bounded from below (because ζ > 0) and from above (because P ′ is
bounded). Moreover, the sequence limN→∞ arg maxϑ |detV (ϑ0, . . . ,ϑN ,ϑ)| diverges. Hence for large N ,
the last term dominates the maximization, such that the sequences of nodes becomes a sequence of weighted
Leja nodes using the prior p(ϑ), which yield a converging surrogate (provided that weighted Leja nodes
provide a converging surrogate).

The key point in obtaining a converging surrogate is that ζ > 0. If ζ = 0, the inaccuracy of uN can
significantly deteriorate the convergence (recall Figure 3), except possibly if u is globally analytic. If the goal
is to optimize ζ, we suggest a heuristically adaptive approach. Start with ζ = ζ0 > 0 and for each iteration,
multiply ζ with a constant k > 1 if the error in the posterior increases and divide ζ by k if the interpolation
error decreases. The error can be estimated by comparing two consecutive approximate posteriors. This
procedure is however not necessary to obtain convergence for the examples in this article, for which a fixed
value of ζ is sufficient.

The convergence theorems (e.g. Theorem 3) in the previous sections can be used to prove convergence of
the posterior. The rate of convergence of the adaptive interpolating surrogate is similar to the rate derived
in Section 3.4. However, the constant of proportionality (denoted with Q previously) is smaller. In general, a
small ζ yields fast convergence but if ζ is too small, spurious oscillations in the interpolant hinder convergence
for small N . The “best” ζ should be picked based on the specifics of the model, the prior, and the likelihood
under consideration, but one can pick it slightly too large to prevent numerical instabilities for small N . We
will demonstrate this in Section 4.

3.6 Convergence properties

We assess the convergence properties of our algorithm using the Kullback–Leibler divergence, which is often
used in a Bayesian setting to measure differences between distributions.

3.6.1 Convergence of the Kullback–Leibler divergence

Given two probability density functions p(x) and q(x) defined on a set Ω, the Kullback–Leibler divergence
is defined as follows:

DKL(p(x) ‖ q(x)) =

∫
Ω

p(x) log
p(x)

q(x)
dx. (32)

The KL-divergence is always positive, equals 0 if (and only if) p ≡ q, and is finite if p(x) = 0 implies q(x) = 0
(here, it is used that limx→0 x log x = 0).

We are interested in proving bounds on DKL(pN (ϑ | z) ‖ p(ϑ | z)) or DKL(p(ϑ | z) ‖ pN (ϑ | z)). This is
non-trivial due to the logarithm in the integral. To prove convergence, we first prove pointwise convergence
of the logarithm, extend this to convergence of the integral using Fatou’s lemma and finally conclude that
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convergence is attained. As the Kullback–Leibler divergence is defined for probability density functions, we
have to incorporate the scaling of the posterior again. To this end, let γN and γ be defined as follows:

γ =

∫
Ω

p(z | ϑ)p(ϑ) dϑ, (33)

γN =

∫
Ω

pN (z | ϑ)p(ϑ) dϑ. (34)

To start off, the following lemma provides pointwise convergence of log pN (x)
p(x) . We omit the proof.

Lemma 4. Let gn : Ω → R be a series of functions with gn(x) → g(x) for n → ∞, for all x ∈ Ω. Assume
gn > 0 for all n and g > 0. Then

log
gn(x)

g(x)
→ 0, for n→∞, for all x ∈ Ω. (35)

Note that the generalization to uniform convergence is not trivial. By definition the Kullback–Leibler
divergence does not require uniform convergence, but only convergence in the integral. As the functions we
are using are probability density functions, Fatou’s lemma is handy. It is well-known and we omit the proof.

Lemma 5. Let f1, f2, . . . be a sequence of extended real-valued measurable functions. Let f = lim supn→∞ fn.
If there exists a non-negative integrable function g (i.e. g measurable and

∫
Ω
g dµ <∞) such that fn ≤ g for

all n, then

lim sup
n→∞

∫
Ω

fn dµ ≤
∫

Ω

f dµ. (36)

We are now in a position to prove convergence of the Kullback–Leibler divergence, given pointwise
convergence of the posterior. As uniform convergence of the posterior has been studied extensively in
Section 3.4, assuming pointwise convergence is not a restriction. However, we additionally assume positivity
of the posterior, as the Kullback–Leibler becomes undefined otherwise.

Theorem 6. Suppose ‖pN (ϑ | z)− p(ϑ | z)‖∞ → 0 for N →∞ and both pN > 0 and p > 0 in Ω. Then

DKL(p(ϑ | z) ‖ pN (ϑ | z))→ 0. (37)

Proof. The proof consists of combining Lemma 4 and 5. The result follows from applying Lemma 5 with
fn = p log p

pN
and f = 0, in conjunction with g = supN log p

pN
+ 1. A direct application of this lemma

yields DKL(p(ϑ | z) ‖ pN (ϑ | z))→ 0. However, to apply Lemma 5, pointwise convergence of log p
pN

to 0 is
necessary. This can easily be seen by applying Lemma 4, with gN = pN and g = p.

In a similar way, convergence of DKL(pN (ϑ | z) ‖ p(ϑ | z))→ 0 can be proved.

3.6.2 Convergence rate of the Kullback–Leibler divergence

So far Theorem 6 only demonstrates convergence of the Kullback–Leibler divergence. The exact rate of
convergence (or the constant involved in it) has not been deduced. In this section we will prove that the
convergence rate doubles under general assumptions. These assumptions are:

(A.1). ‖pN (ϑ | z)− p(ϑ | z)‖∞ ≤ CN−α,

(A.2). pN (z | ϑ) > 0 and p(z | ϑ) > 0,

(A.3). p(ϑ) has compact support.

The first assumption states that the estimated posterior converges with rate α, which can be shown
using Theorem 3. Many statistical settings (such as the model from (1) with a uniform prior) fit in these
assumptions. Note that the last assumption restricts the prior such that it has bounded support, so priors
on an unbounded domain (e.g. the improper uniform prior or Jackson’s prior) cannot be used in the setting
of this section. The convergence result reads as follows.
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Theorem 7. Suppose (A.1), (A.2), and (A.3) hold.
Then

DKL(p(ϑ | z) ‖ pN (ϑ | z)) ≤ KN−2α. (38)

Proof. The Kullback–Leibler divergence is always positive, hence

DKL(p(ϑ | z) ‖ pN (ϑ | z)) ≤DKL(pN (ϑ | z) ‖ p(ϑ | z)) +DKL(p(ϑ | z) ‖ pN (ϑ | z))

=

∫
Ω

pN (ϑ | z) log
pN (ϑ | z)

p(ϑ | z)
dϑ+

∫
Ω

p(ϑ | z) log
p(ϑ | z)

pN (ϑ | z)
dϑ

=

∫
Ω

(pN (ϑ | z)− p(ϑ | z)) log

(
γ

γN

pN (z | ϑ)

p(z | ϑ)

)
dϑ,

with γ and γN according to (33). By taking the absolute value of the integral, we can bound it using the
∞-norm as follows.

DKL(p(ϑ | z) ‖ pN (ϑ | z)) ≤
∫

Ω

|pN (ϑ | z)− p(ϑ | z)|
∣∣∣∣log

(
γ

γN

pN (z | ϑ)

p(z | ϑ)

)∣∣∣∣ dϑ

≤
∥∥∥∥log

(
γ

γN

pN (z | ϑ)

p(z | ϑ)

)∥∥∥∥
∞

∫
Ω

|pN (ϑ | z)− p(ϑ | z)|dϑ.

Then, by working out the first formula we obtain:

DKL(p(ϑ | z) ‖ pN (ϑ | z)) ≤‖ log(γ)− log(γN ) + log(pN (z | ϑ))− log(p(z | ϑ))‖∞

·
∫

Ω

|pN (z | ϑ)− p(z | ϑ)|p(ϑ) dϑ.

By application of the triangle inequality the first term can be bounded. By the boundedness of Ω, the latter
term can be bounded. Both yield ∞-norms as follows:

DKL(p(ϑ | z) ‖ pN (ϑ | z)) ≤ (‖ log(γ)− log(γN )‖∞ + ‖ log(pN (z | ϑ))− log(p(z | ϑ))‖∞)

·‖pN (z | ϑ)− p(z | ϑ)‖∞.

As γ > 0, the first term can be bounded using the Lipschitz continuity of the logarithm. Moreover, Ω is
compact, hence there exists an A > 0 such that p(z | ϑ) > A with ϑ ∈ Ω. Therefore the second term can
also be bounded using the Lipschitz continuity of the logarithm. The last term is already in the right format,
and we obtain

DKL(p(ϑ | z) ‖ pN (ϑ | z)) ≤ 1

| logA| (‖γ − γN‖∞ + ‖pN (z | ϑ)− p(z | ϑ)‖∞) ‖pN (z | ϑ)− p(z | ϑ)‖∞.

Finally, the result readily follows:

DKL(p(ϑ | z) ‖ pN (ϑ | z)) ≤
(
C1N

−α + C2N
−α)C2N

−α = KN−2α.

Note that in a similar manner it can be proved that DKL(pN (ϑ | z) ‖ p(ϑ | z)) ≤ KN−2α.

4 Numerical results

Three numerical testcases are employed to show the performance of our methodology. First, in Section 4.1
two explicit testcases are studied, which are cases where an expression for u is known that can be evaluated
accurately such that the exact posterior can be determined explicitly. We use these cases to verify the
theoretical properties that have been derived in Section 3. For sake of comparison, these cases are studied
using interpolation based on Clenshaw–Curtis nodes, Leja nodes, and the proposed adaptive weighted Leja
nodes.

In Section 4.2, we study calibration of the one-dimensional Burgers’ equation. As an explicit solution
is not used here, we can show the practical purposes of the interpolation procedure to problems that are
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defined implicitly. We determine the interpolant using Clenshaw–Curtis nodes and weighted Leja nodes.
The last test case consists of the calibration of the closure parameters of the Spalart–Allmaras turbulence
model. Here, a single evaluation of the likelihood is computationally expensive as it requires the numerical
solution of the Navier–Stokes equations. In this case straightforward methods (such as MCMC) become
intractable and therefore we will only study weighted Leja nodes.

Note that the quantity of interest in each case is the posterior and not the model. Therefore we mainly
study the convergence in the posterior and to a lesser extent the convergence in the model.

4.1 Explicit testcases

We consider two cases: an analytic (hence smooth) function and a non-analytic smooth function. Both
functions are defined for any dimension d.

4.1.1 Analytic function

A well-known class of analytic functions is formed by Gaussian functions. We will use the following function
to represent the model:

ud : Rd → R, with ud(ϑ) := exp

(
−

d∑
k=1

(
ϑk −

1

2

)2
)
. (39)

This function is a composition of the exponential function and a polynomial, which are both globally analytic.
Hence also this function is globally analytic and can therefore be approximated well using polynomials.
Consequently, any nodal set can be used to interpolate this function—even an equidistant set—so we use
this test case merely for a sanity check of the procedure and the theory.

Two statistical models are employed to demonstrate the independence of our procedure from the likeli-
hood. The first is the statistical model discussed before, i.e. zk = ud(ϑ) + εk, with ε ∼ N (0,Σ), Σ = σ2I,
and σ = 1/10. As discussed before, the likelihood equals

pN (z | ϑ) ∝ exp

[
−1

2
(z− ud(ϑ))

T
Σ−1(z− ud(ϑ))

]
, (40)

where z is the vector containing the data. A data vector of n = 20 elements is generated by sampling from a
Gaussian distribution with mean ud(1/4) and standard deviation σ. The subscript N refers to multivariate
normal. For the second model, we do not write an explicit relation between the data and the model, but
only impose the following likelihood:

pβ(z | ϑ) ∝
{

(1− d)2(1 + d)2 if |d| < 1

0 otherwise
, with d =

z − ud(ϑ)

z
and z =

1

n

n∑
k=1

zk. (41)

We call this likelihood the Beta likelihood (denoted with the β), which we use because it has different
characteristics than the Gaussian likelihood. As the standard deviation is significantly larger in the second
case, the posteriors considerably differ. Both likelihoods are continuously differentiable, so we expect similar
accuracy when applying the proposed algorithm. In both cases the prior is assumed to be uniform on the
domain [0, 1]d.

Because the model under consideration is analytic, the value of ζ is not very important for the accuracy
of the interpolation procedure (even ζ = 0 works well in this case). We choose ζ = 10−3, because then
convergence of the posterior can be observed well, which is shown in Figure 6 for d = 3. It is clearly
visible that for the multivariate normal case, the nodes are placed more in the center of the domain (see
for comparison Figure 2). This is also true for the second case, but less apparent due to the less intuitive
structure of the posterior. The asymmetry between dimensions occurs due to the interpolation with Leja
nodes, which are asymmetric by construction.

If we restrict ourselves to a one-dimensional case, the convergence of our algorithm can be assessed
with high accuracy as it is possible to determine the Kullback–Leibler divergence with high accuracy using
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Figure 6: True and estimated posteriors with the analytic Gauss function as model using the multivariate
normal (N ) likelihood and the Beta (β) likelihood with 25 Leja nodes. Red is high, blue is low.
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Figure 7: Convergence for the Gaussian likelihood using the Gauss test function. The Kullback–Leibler
divergence of the estimated posterior with respect to the true posterior is depicted in blue and the ∞-norm
of the difference between the interpolant and the true model is depicted in red.

a quadrature rule. Moreover, a comparison with an interpolant based on Clenshaw–Curtis nodes can be
performed.

The Kullback–Leibler divergence cannot be determined for the Beta likelihood. This is because two
interpolants uN1

and uN2
in general do not have |d| < 1 exactly at similar ϑ. Therefore the set where

one model has d = 0 and the other d > 0 (and vice versa) is measurable, rendering the Kullback–Leibler
divergence unbounded.

The Kullback–Leibler divergence is determined using posteriors constructed with weighted Leja nodes,
unweighted Leja nodes, and the Clenshaw–Curtis nodes (see Figure 7). All three nodal sets yield a model and
a posterior that converge to respectively the true model and true posterior. The doubling of the convergence
rate, according to Theorem 7, already becomes apparent for the small number of nodes used and it is clearly
visible that the weighted Leja nodes are mainly constructed for accuracy of the posterior instead of the model.
The weighted Leja nodes show the fastest convergence, but the difference of model evaluations necessary to
reach a certain accuracy level is small as the model under consideration is analytic.

4.1.2 Non-analytic function

A well-known test case for interpolation methods is Runge’s function, defined (up to a constant) in the

domain [0, 1]
d

as follows:

ud : [0, 1]d → R, with ud(x) =
5

2 + 50
∑d
k=1 (xk − 1

2 )
2 . (42)

This function is infinitely smooth, i.e. all derivatives exist and are continuous. However, its Taylor series
has small radius of convergence. Using a nodal set with an exponentially growing Lebesgue constant yields
a sequence of interpolants that diverge, which is well-known and typically called Runge’s phenomenon. The
Gaussian statistical model, the uniform prior, and the true value ϑ ≡ 1

4 are reconsidered for this test case.
Results in terms of convergence using the three different nodal sets discussed previously are shown in Figure 8
(again d = 1).

Differences between the nodal sets are more apparent than in the smooth test case. Again, the weighted
Leja nodes are mainly constructed to obtain an accurate posterior and the accuracy of the interpolant is less
important. It is clear that the weighted Leja nodes outperform the other nodal sets in the Kullback–Leibler
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Figure 8: Convergence of the model (in red) and convergence of the Kullback–Leibler divergence (in blue)
using four sampling algorithms for Runge’s function.

norm. The unweighted Leja nodes and Clenshaw–Curtis nodes perform equally well, which is surprising as
the Leja nodes do not have a logarithmically growing Lebesgue constant (contrary to the Clenshaw–Curtis
nodes). Figure 8 also shows that upon increasing the value of ζ from 10−3 to 1, the convergence rate of the
weighted Leja sequence slightly decreases, as expected from theory. For small N , the posterior dominates
the weighting function in Leja nodes, while for large N the effect of ζ becomes important.

4.2 Burgers’ equation

In this section the Burgers’ equation is considered where the boundary condition is unknown, extending the
example from Marzouk and Xiu [23]. The one-dimensional steady state Burgers’ equation for a solution field
y(x) and diffusion coefficient ν is stated as follows:

0 = ν
∂2y

∂x2
− y ∂y

∂x
, (43)

where boundary conditions complete the system. In this section, we will consider the equation on an interval
[−1, 1] with ν = 0.1 and use the boundary conditions y(−1) = 1 + δ and y(1) = −1, where δ is unknown.

The inverse problem is as follows. Let x0 be the zero-crossing of the solution y, i.e. y(x0) = 0. Given
a vector of noisy observations of x0, we would like to obtain the value of δ, i.e. reconstruct the boundary
conditions from a specific value of the function. In the notation used so far, we would have a function
u : R→ R with u(δ) = x0. In the current setting, this function is only defined implicitly.

Let z be a vector with nd = 20 noisy observations of x0. We generate this vector by sampling δ from
a normal distribution with mean 0.05 and standard deviation σ = 0.05 and determining the corresponding
values of x0. We use a uniform prior such that δ ∼ U [0, 0.1]. The likelihood is Gaussian with zero mean and
standard deviation σ, i.e. for each “measurement” zk (for k = 1, . . . , nd) we have

zk − x0(δ) ∼ N (0, σ2). (44)

A second-order finite volume scheme is employed to numerically solve the Burgers’ equation equipped
with a uniform mesh of 105 cells. The zero-crossing is determined by piecewise interpolation of the solution.

We use Clenshaw–Curtis, Leja, and weighted Leja nodes to compute the posterior. In all three cases,
the interpolant was refined until the Kullback–Leibler divergence of the estimated posterior with respect to
the true posterior (computed using a fine quadrature rule) is smaller than 10−7. In Figure 9 a sketch of
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Figure 9: Left: Propagation of the posterior through the Burgers’ equations. Right: The prior (in red) and
the posterior (blue) of the Burgers’ equation calibration test case.
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Figure 10: Convergence of the posterior of Burgers’ equation using three different sampling procedures.

the distribution of u after propagation of this posterior and the exact posterior is depicted. The standard
deviation of the output variable u is small because we only take measurement errors into account (hence the
standard deviation decreases for larger data sets). The posteriors determined after convergence of the three
nodal sequences did not differ visually from the true posterior, so we do not present them separately.

There are large differences in the number of nodes that are necessary to obtain convergence, see Figure 10.
For the posteriors determined using Clenshaw–Curtis nodes and Leja nodes, approximately 45 nodes are
necessary. For the weighted Leja nodes, just 18 nodes are necessary for ζ = 1 and only 9 nodes are necessary
for ζ = 10−3. This significant improvement is because the initial nodes already provide a good approximation
of the posterior, which is leveraged when ζ is small. Again it is clearly visible that for small N , the posterior
dominates the weighting function, while for large N the value of ζ dominates. In both cases the weighted
Leja nodes clearly outperform the other nodal sets.
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Figure 11: The pressure coefficient around the RAE2822 airfoil using the canonical turbulence coefficients.

4.3 Turbulence model closure parameters

In this section we consider the flow around an airfoil (i.e. the two-dimensional cross section of a wing).
The airfoil under consideration is the RAE2822, because extensive publicly available measurements have
been performed for this particular airfoil. We use the wind tunnel measurements for the pressure coefficient
from Cook [8] and study Case 6, i.e. the angle of attack equals 2.92◦, the Mach number equals 0.725, and
the Reynolds number equals 6.5 · 106. These parameters are not corrected for wind tunnel effects, which
is necessary for comparison with numerical simulations. See Slater et al. [33] for more information about
such a correction procedure and Cook et al. [8] for more information about the measurement data under
consideration, as these details are out of the scope of this article. The transonic flow around the airfoil in
this case is depicted in Figure 11, determined numerically with the canonical turbulence coefficients of the
Spalart–Allmaras turbulence model. It is clearly visible that there is shock formation on the upper side of
the airfoil.

4.3.1 Problem description

The flow around an airfoil is often modeled using the Navier–Stokes equations. Due to the large range of
scales present in the solution of these equations, typically the Reynolds-averaged Navier–Stokes (RANS)
equations are employed. The details are out of the scope of this article, we refer the interested reader
to Wilcox [39]. The RANS equations do not form a closed set of equations and require a closure model.
Typically, the Boussinesq hypothesis is used, which introduces an eddy viscosity. This viscosity models
the effect of turbulence in the flow and requires an additional set of equations called a turbulence model.
Throughout the years, many different turbulence models have been developed. These models have fitting
parameters, chosen such that the model represents idealized test cases well. Often the coefficients are
calibrated in a non-systematic way (e.g. by hand). A turbulence model commonly used for flow over airfoils
is the Spalart–Allmaras (SA) turbulence model, which consists of a single equation modeling the transport,
production, and dissipation of the eddy viscosity [34].

Several forms of this model exist. The original SA turbulence model has 10 constants, typically defined
as follows:

σ 2/3 Cb1 0.1355 Cb2 0.622
κ 0.41 Cw2 0.3 Cw3 2.0

Ct3 1.2 Ct4 0.5 Cv1 7.1
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Here we omit Cw1, which is commonly defined as Cw1 = Cb1/κ
2 + (1 + Cb2)/σ.

Although tested extensively, straightforward physical derivations do not exist for many of the parameter
values above. In this section, we will calibrate these parameters systematically using Bayesian model calib-
ration and apply the weighted Leja nodes proposed in this article. We will employ ζ = 1, to make sure that
we have convergence without spurious oscillations. Results on the calibration of turbulence parameters exist
in literature (e.g. [7, 10]), where it is customary to calibrate the parameters using MCMC methods.

We will employ SU2 to numerically solve the RANS equations. SU2 is a second-order finite-volume
computational fluid dynamics solver with support for the Spalart-Allmaras turbulence model. We have
made a few minor modifications to allow the turbulence parameters to be changeable using configuration
files. SU2 has been tested extensively to the airfoil test case (for the canonical turbulence parameters) with
these options, see [28].

4.3.2 Statistical model

We consider the same parameters for calibration as Edeling et al. [10] and Cheung et al. [7], namely ϑ =

(κ, σ, Cb1, Cb2, Cv1, Cw2, Cw3)
T

. The remaining parameters are fixed at their canonical values.
We are now in the position to state the statistical model. Let x be the spatial parameter along the

contour of the airfoil, i.e. x parametrizes the airfoil such that each x has a unique value for the pressure
coefficient. Suppose the data (i.e. a vector of pressure coefficients) z = (z1, . . . , zn)

T
is provided at locations

x = (x1, . . . , xn)
T

on the airfoil. Then the statistical model under consideration is as follows:

v(ϑ;xk) = u(ϑ;xk) + δ(xk),

z(xk) = v(ϑ;xk) + εk,
(45)

where δ(x) ∼ N (0, f(x, x′)) is a Gaussian process with mean 0 and squared exponential covariance function

f(x, x′) = A exp

[
−|x− x

′|2
2l2

]
. (46)

Moreover, we have all εk independently and identically normally distributed with mean zero and standard
deviation σ̃, which is defined explicitly later (we use σ̃ to overcome confusion with one of the turbulence
coefficients). The measurement data from Cook et al. [8] has n = 103 measurement locations along the
surface of the airfoil.

We choose the model such that v is the “true” process that is modeled by u. δ and εk are the model and
measurement error respectively. Both require an estimation based on knowledge of the model and the data,
as our calibration framework currently does not include hyperparameters. Bounds for the measurement error
are provided in Cook et al. [8], resulting in σ̃ ≈ 0.01. This value is larger than the error of the measurement
data, thus incorporating potential additional errors. The parameters of the Gaussian process are chosen to
be A = 0.6 and l = 0.2, based on the largest error that we expect (which is approximately 0.5, based on the
strength of the shock on top of the airfoil) and the distance between two measurement locations.

4.3.3 Prior and likelihood

The prior is assumed to be multivariate uniformly distributed with mean equal to the canonical values of
the parameters and a variation of 50%. The support of the prior is therefore as follows:

κ [0.205, 0.615]
σ [1/3, 1]

Cb1 [0.0678, 0.2033]
Cb2 [0.311, 0.933]
Cv1 [3.55, 10.65]
Cw2 [0.2, 0.4]
Cw3 [1, 3]

The likelihood readily follows from the statistical model:

p(z | ϑ) ∝ exp

[
−1

2
dTC−1d

]
, (47)
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with d the misfit and C the covariance, i.e.

dk = z(xk)− u(ϑ;xk), (48)

C = Σ + Cf , with C
[i,j]
f = f(xi, xj) and Σ = σ̃I. (49)

Finally, the posterior is formed by a multiplication of the likelihood with the prior in the usual way.

4.3.4 Results

We applied calibration with weighted Leja nodes to the current problem and used 100 nodes. The convergence
was assessed using cross-validation between two consecutive interpolants, up to the point that visually no
difference can be observed in the posterior. The one- and two-dimensional marginals from the obtained
posterior are depicted in Figure 12. We cannot compare the result with the true posterior, as we did for the
previous two test cases, so instead we compare the posterior with results obtained in literature.

The results are similar to Cheung et al. [7], who calibrated the same set of parameters using MCMC
using more than 30 000 samples. In their study, the parameters κ and Cv1 are informed best, which is also
clearly visible in Figure 12. In our results, the parameter Cb1 is also informed in comparison with the other
parameters, but this is not the case in the study from Cheung et al. There can be various reasons for this,
among others the fact that Cheung et al. used a flat plate test case for the calibration and used the skin
friction coefficient as data.

In the study from Edeling et al. [10] a similar test case is performed. The parameters κ and Cv1 have
the highest Sobol’ indices and are therefore most influential on the model output (which is the pressure
coefficient in this case). This is consistent with our study and the study from Cheung et al. The results for
Cb1 again differ, which we attribute to the fact that Edeling et al. also used the skin friction coefficient and
the flat plate test case.

To conclude, the proposed method is capable of constructing a good approximate posterior using a fraction
of the 30 000 model evaluations that were necessary in the MCMC case. The posterior compares very well
with both studies. By applying MCMC to the constructed surrogate, we can propagate the posterior and
make a prediction under uncertainty. To illustrate this, the obtained uncertainty bound on the pressure
coefficient is depicted in Figure 13. It is clearly visible that the largest uncertainty is near the shock on top
of the airfoil.

5 Conclusion

Bayesian model calibration is an attractive approach for calibrating model parameters of complex physical
models. It is customary to sample the posterior using MCMC methods, but these are only tractable if the
model under consideration can be evaluated rapidly. We consider problems where this is not the case, such
as the calibration of turbulence closure coefficients.

Our proposed method consists of replacing the computationally expensive model with an interpolating
surrogate model. The interpolant is determined adaptively using weighted Leja nodes, where the weighting
function directly uses the posterior and is changed with each iteration. We have proposed a formulation in
which the weighting function consists of two parts: a part incorporating the currently available posterior
and a part incorporating the accuracy of the interpolant. The balance between these two can be changed
adaptively by the parameter ζ and convergence is guaranteed for any ζ > 0. The “best” value of ζ depends
on the specifics of the model, the likelihood, and the posterior, and can be changed adaptively during the
calibration procedure. Compared to conventional nodal sets (such as Clenshaw–Curtis nodes), we obtain
more accurate results with less nodes.

Theoretically we have proved that if the interpolant converges to the true model in the∞-norm, then the
estimated posterior converges to the true posterior in the∞-norm with a similar rate. Under mild conditions,
the Kullback–Leibler divergence between the estimated and exact posterior converges with a doubled rate.

The three conducted numerical experiments confirm these theoretical findings: if the interpolant converges
to the model, the Kullback–Leibler divergence converges to zero with doubled rate. For the explicit numerical
test cases, this doubled convergence in the Kullback–Leibler divergence was clearly visible. The calibration
of the Burgers’ equation shows that the approach also works well for models that are defined implicitly.
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Finally, calibration of turbulence closure parameters has been discussed, showing that the approach is
truly applicable to computationally expensive models. We have compared the results from our calibration
procedure with results conducted using Monte Carlo methods and the posteriors shows good resemblance,
at a highly reduced computational cost.

5.1 Future work

Firstly, there are some limitations about the statistical model that can be used in our approach. We require
that it can be written as a function of the model and no hyperparameters are used in the statistical model.
Extending the current approach to such a setting is an important step, as hyperparameters are often employed
in Bayesian model calibration.

Secondly, we believe the value of ζ should depend on the specifics of the model and further research is
required to find the optimal value a priori or either dynamically during the procedure.
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