110 research outputs found

    Concept of an exoskeleton for industrial applications with modulated impedance based on Electromyographic signal recorded from the operator

    Get PDF
    The introduction of an active exoskeleton that enhances the operator power in the manufacturing field was demonstrated in literature to lead to beneficial effects in terms of reducing fatiguing and the occurrence of musculo-skeletal diseases. However, a large number of manufacturing operations would not benefit from power increases because it rather requires the modulation of the operator stiffness. However, in literature, considerably less attention was given to those robotic devices that regulate their stiffness based on the operator stiffness, even if their introduction in the line would aid the operator during different manipulations respect with the exoskeletons with variable power. In this thesis the description of the command logic of an exoskeleton for manufacturing applications, whose stiffness is modulated based on the operator stiffness, is described. Since the operator stiffness cannot be mechanically measured without deflecting the limb, an estimation based on the superficial Electromyographic signal is required. A model composed of 1 joint and 2 antagonist muscles was developed to approximate the elbow and the wrist joints. Each muscle was approximated as the Hill model and the analysis of the joint stiffness, at different joint angle and muscle activations, was performed. The same Hill muscle model was then implemented in a 2 joint and 6 muscles (2J6M) model which approximated the elbow-shoulder system. Since the estimation of the exerted stiffness with a 2J6M model would be quite onerous in terms of processing time, the estimation of the operator end-point stiffness in realtime would therefore be questionable. Then, a linear relation between the end-point stiffness and the component of muscle activation that does not generate any end-point force, is proposed. Once the stiffness the operator exerts was estimated, three command logics that identifies the stiffness the exoskeleton is required to exert are proposed. These proposed command logics are: Proportional, Integral 1 s, and Integral 2 s. The stiffening exerted by a device in which a Proportional logic is implemented is proportional, sample by sample, to the estimated stiffness exerted by the operator. The stiffening exerted by the exoskeleton in which an Integral logic is implemented is proportional to the stiffness exerted by the operator, averaged along the previous 1 second (Integral 1 s) or 2 seconds (Integral 2 s). The most effective command logic, among the proposed ones, was identified with empirical tests conducted on subjects using a wrist haptic device (the Hi5, developed by the Bioengineering group of the Imperial College of London). The experimental protocol consisted in a wrist flexion/extension tracking task with an external perturbation, alternated with isometric force exertion for the estimation of the occurrence of the fatigue. The fatigue perceived by the subject, the tracking error, defined as the RMS of the difference between wrist and target angles, and the energy consumption, defined as the sum of the squared signals recorded from two antagonist muscles, indicated the Integral 1 s logic to be the most effective for controlling the exoskeleton. A logistic relation between the stiffness exerted by the subject and the stiffness exerted by the robotic devices was selected, because it assured a smooth transition between the maximum and the minimum stiffness the device is required to exert. However, the logistic relation parameters are subject-specific, therefore an experimental estimation is required. An example was provided. Finally, the literature about variable stiffness actuators was analyzed to identify the most suitable device for exoskeleton stiffness modulation. This actuator is intended to be integrated on an existing exoskeleton that already enhances the operator power based on the operator Electromyographic signal. The identified variable stiffness actuator is the DLR FSJ, which controls its stiffness modulating the preload of a single spring

    Virtual Stiffness: A Novel Biomechanical Approach to Estimate Limb Stiffness of a Multi-Muscle and Multi-Joint System

    Get PDF
    In recent years, different groups have developed algorithms to control the stiffness of a robotic device through the electromyographic activity collected from a human operator. However, the approaches proposed so far require an initial calibration, have a complex subject-specific muscle model, or consider the activity of only a few pairs of antagonist muscles. This study described and tested an approach based on a biomechanical model to estimate the limb stiffness of a multi-joint, multi-muscle system from muscle activations. The “virtual stiffness” method approximates the generated stiffness as the stiffness due to the component of the muscle-activation vector that does not generate any endpoint force. Such a component is calculated by projecting the vector of muscle activations, estimated from the electromyographic signals, onto the null space of the linear mapping of muscle activations onto the endpoint force. The proposed method was tested by using an upper-limb model made of two joints and six Hill-type muscles and data collected during an isometric force-generation task performed with the upper limb. The null-space projection of the muscle-activation vector approximated the major axis of the stiffness ellipse or ellipsoid. The model provides a good approximation of the voluntary stiffening performed by participants that could be directly implemented in wearable myoelectric controlled devices that estimate, in real-time, the endpoint forces, or endpoint movement, from the mapping between muscle activation and force, without any additional calibrations

    On the impact of the Bimodal Oscillating System (BiOS) on the biogeochemistry and biology of the Adriatic and Ionian Seas (Eastern Mediterranean)

    Get PDF
    Analysis of 20-year time-series of the vertically averaged salinity and nutrient data in the Southern Adriatic shows that the two parameters are subject to strong decadal variability. In addition, it is documented that nutrient and salinity variations are out of phase. Nutrients in the Ionian and in the Adriatic vary in parallel except that generally the nutrient content in the Adriatic is lower than in the Ionian, a fact that has been attributed to primary producer consumption following the winter convective mixing. As shown earlier, North Ionian Gyre (NIG) changes its circulation sense on a decadal scale due to the Bimodal Oscillating System, i.e. the feedback mechanism between the Adriatic and Ionian. Cyclonic circulation causes a downwelling of the nitracline along the borders of the NIG and a decrease in the nutrient content of the water flowing into the Adriatic across the Otranto Strait, and vice versa. In addition, the highly oligotrophic central area of the Ionian shows annual blooms only during cyclonic NIG circulation. Inversion of the sense of the NIG results in the advection of Modified Atlantic Water or of the Levantine/Eastern Mediterranean waters in the Adriatic. Here, we show that the presence of allochtonous organisms from Atlantic/Western Mediterranean and Eastern Mediterranean/temperate zone in the Adriatic are concurrent with the anticyclonic and cyclonic circulations of the NIG, respectively. On the basis of the results presented, a revision of the theory of Adriatic ingressions formulated in the early 1950s is proposed

    Exploiting Intrinsic Kinematic Null Space for Supernumerary Robotic Limbs Control

    Get PDF
    Supernumerary robotic limbs (SRLs) gained increasing interest in the last years for their applicability as healthcare and assistive technologies. These devices can either support or augment human sensorimotor capabilities, allowing users to complete tasks that are more complex than those feasible for their natural limbs. However, for a successful coordination between natural and artificial limbs, intuitiveness of interaction and perception of autonomy are key enabling features, especially for people suffering from motor disorders and impairments. The development of suitable human-robot interfaces is thus fundamental to foster the adoption of SRLs.With this work, we describe how to control an extra degree of freedom by taking advantage of what we defined the Intrinsic Kinematic Null Space, i.e. the redundancy of the human kinematic chain involved in the ongoing task. Obtained results demonstrated that the proposed control strategy is effective for performing complex tasks with a supernumerary robotic finger, and that practice improves users' control ability

    Contraction level, but not force direction or wrist position, affects the spatial distribution of motor unit recruitment in the biceps brachii muscle

    Get PDF
    Purpose: Different motor units (MUs) in the biceps brachii (BB) muscle have been shown to be preferentially recruited during either elbow flexion or supination. Whether these different units reside within different regions is an open issue. In this study, we tested wheter MUs recruited during submaximal isometric tasks of elbow flexion and supination for two contraction levels and with the wrist fixed at two different angles are spatially localized in different BB portions. Methods: The MUs’ firing instants were extracted by decomposing high-density surface electromyograms (EMG), detected from the BB muscle of 12 subjects with a grid of electrodes (4 rows along the BB longitudinal axis, 16 columns medio-laterally). The firing instants were then used to trigger and average single-differential EMGs. The average rectified value was computed separately for each signal and the maximal value along each column in the grid was retained. The center of mass, defined as the weighted mean of the maximal, average rectified value across columns, was then consdiered to assess the medio-lateral changes in the MU surface representation between conditions. Results: Contraction level, but neither wrist position nor force direction (flexion vs. supination), affected the spatial distribution of BB MUs. In particular, higher forces were associated with the recruitment of BB MUs whose action potentials were represented more medially. Conclusion: Although the action potentials of BB MUs were represented locally across the muscle medio-lateral region, dicrimination between elbow flexion or supination seems unlikely from the surface representation of MUs action potentials

    A singular case of massive urethrorrhagia solved by transarterial embolization

    Get PDF
    Abstract Background Urethrorrhagia is frequent in pelvic trauma, rarely due to traumatic injuries of internal pudendal artery branches. Case presentation Our aim is to underline the role of transarterial embolization in selected patients, as in this case in which a young man manifested urethral hemorrhage after high-energy motorcycle crash not associated with injuries of the inferior urinary tract. Multi-detector computed tomography (MDCT) showed pubic symphysis diastasis and perineal hematoma with pseudoaneurysm into the penis bulb. The first approach was conservative with perineal external compression and intravenous injection of tranexamic acid. Afterward, due to the decline of clinical conditions, we decided to perform a selective angiography, confirming the vascular injury of distal branches of both internal pudendal arteries with contrast agent extravasation into urethral bulb; endovascular embolization was performed with detachable micro-coils. The principal results were seen quickly, indeed urethrorrhagia arrested and hemoglobin values normalized. Erectile function was preserved at 6-months follow-up. Conclusions Endovascular embolization proved to be a minimally invasive therapeutic approach, clinically effective, with a low rate of complications and high probability to preserve erectile function

    Successful endovascular embolization of a giant splenic artery pseudoaneurysm secondary to a huge pancreatic pseudocyst with concomitant spleen invasion

    Get PDF
    Pseudoaneurysms of the pancreatic and peripancreatic arteries is a well-known complication of chronic or necrotizing pancreatitis due to proteolytic enzymatic digestion of the arterial wall. A major part of peripancreatic pseudoaneurysms involve the splenic artery, but any peripancreatic artery may be involved and bleed. They are potentially life threatening for patients, due to spontaneous intraperitoneal rupture, rupture and fistulization into the surrounding organs, or fistulization into the pancreatic duct. Small ones are usually asymptomatic and are often diagnosed incidentally, while giant (> 5 cm) aneurysms and pseudoaneurysms are symptomatic and may be detected as a pulsatile mass in the upper-left quadrant or epigastrium. Imaging plays a key role in the identification of splenic artery aneurysms and pseudoaneurysms, while angiography still represents the gold standard for the diagnosis, although nowadays it plays a prominent role in treatment. Treatment of splenic artery pseudoaneurysms is mandatory because of the high probability of rupture, with a mortality rate of up to 90%. The gold standard treatment is represented by surgery, with a mortality rate between 16% and 50%. In recent years the endovascular approach has proven to be an effective alternative treatment for splenic artery pseudoaneurysms, and it is currently the method of choice. In this article, we present the case of a ant pseudoaneurysm of the splenic artery due to huge pseudocysts in a young alcoholic patient with recurrent and chronic pancreatitis, complicated by fistulization and invasion of spleen parenchyma and arteriovenous fistula
    • …
    corecore